High-Performance MPI Application Energy Consumption Profiling

<u>Victor Getmanskiy</u> Oleg Shapovalov Efim Sergeev Dmitry Kryzhanovsky

Singularis Lab, Ltd.

Volgograd State Technical University

Outline

- 1. Power management in Processors
- 2. Energy consumption profiling
- 3. Packages and benchmarks
- 4. Difficulties and reefs
- 5. How to profile: methodology
- 6. Analysis results
- 7. Conclusions
- 8. Common results

Energy-efficient supercomputers

20-th place Dell C8220X Cluster, Intel Xeon E5-2680v2 10C 2.8GHz, InfiniBand 4x FDR, Intel Xeon Phi 7120P **1-st place** ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150

2.39 GFlops/W

Intel® Xeon Phi™

5.27 GFlops/W

Scope of power analysis

- Hardware analysis
 - analysis of computational system consumption
 - no analysis of single application consumption
- Software analysis at application level (Power Top)
 - analysis of single application consumption
 - detecting the consumption sources (IO, memory, HDD, CPU etc.)
- Software analysis at function level (Intel[®] VTune Amplifier)
 - analysis of consumption of single functions and units
 - detecting the functions (methods) requiring energy consumption optimization by the developer

C-states of Intel[®] Xeon Phi[™]

CPU **C-states** are core power states requested by the Operating System Directed Power Management (OSPM) infrastructure. C1-Cn states describe states where the processor clock is inactive and different parts of the processor are powered down.

C0	Full on
C1/C1E	Auto-halt
C3 Auto/Deep	Sleep
C6	Deep Power Down

C-states of Intel[®] Xeon Phi[™]

Processor C States

- C-States ensure lower processor power during idle light workloads
- C-State limits can be set by BIOS
- A processor can go into sleep states several thousand times per second
- OS controls the C states in its idle process

	Active state	Sle	ep states		
	<u>C0</u>	<u>C1/C1E</u> <u>C3</u>		<u>C6</u>	<u>C7</u>
	Operating	Halt	Sleep	Deep S	ileep
Core clock	N	off	off	off	off
PLL	JU	JU	off	off	off
Core caches			fl <mark>ushe</mark> d	fl <mark>ushe</mark> d	fl <mark>ushe</mark> d
Shared cache					fl <mark>ushe</mark> d
Wakeup time*	active			\bigcirc	\bigcirc
Core Idle power*				~ 0	< C6
* Rough approximation					

P-states and C-states

C-states – Processor Power States P-states – Processor Performance Power States P-states apply only to C0 state of processor and control voltage and clock frequency

Processor Performance Power States (P-States)

PO	Processor consumes max power and is at max performance. Additional performance increase with Intel® Turbo Boost Technology
P1	Processor consumes less power and performance capabilities are limited below max.
Pn	Performance is at minimal level and lowest power consumption. n must not exceed 16.

ACPI Spec Rev. 4.0a Defined

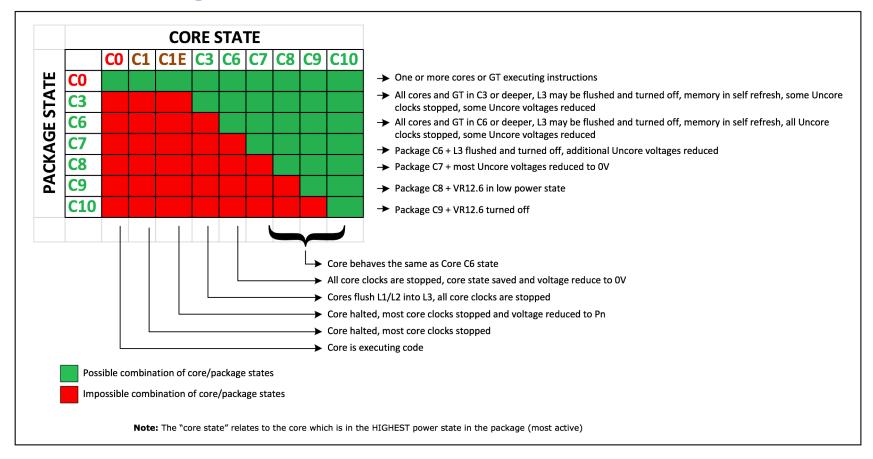
Multiple voltage and frequency operating points

- Software controlled by writing to MSRs
- The voltage is optimized based on the selected frequency and number of active processor cores
- All active processor cores share the same frequency and voltage.

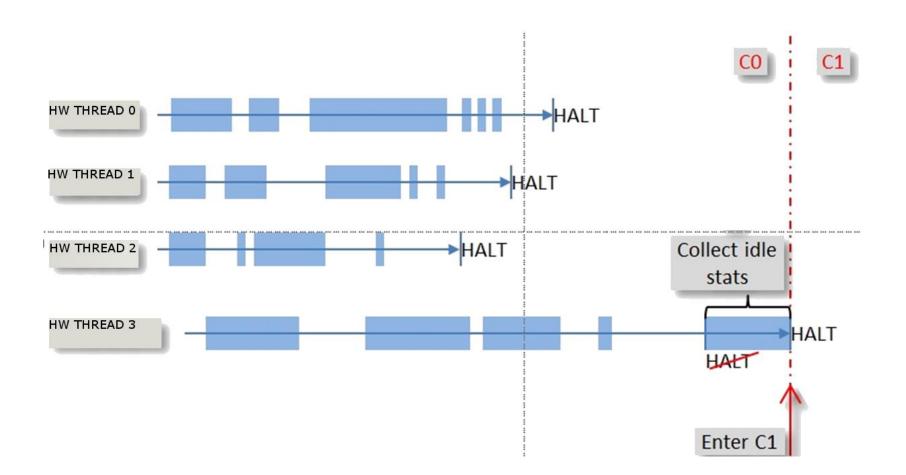
Number of supported states is processor dependent

Power states summary

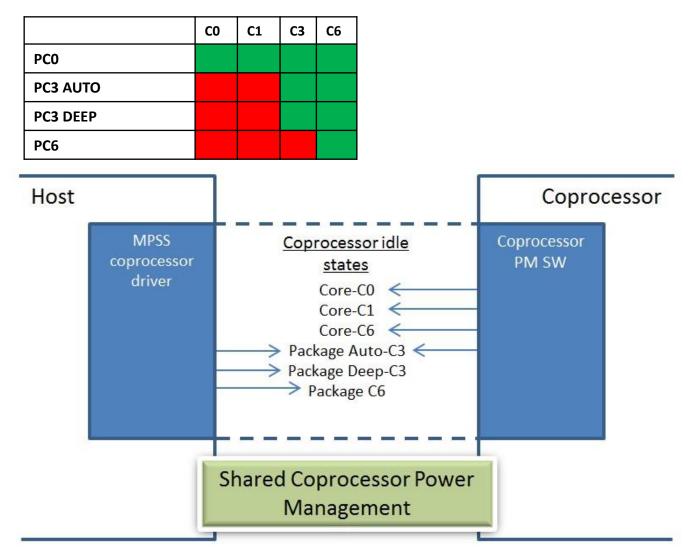
	P-state	C-state
Processor	+ (P)	+ (PC)
Core	-	+ (C)
Logical	-	+ (LC)


Processor C-state = Min(core C-states)

Core C-state = Minimum barrier(set of all logical C-states)


Logical C-state = anything the OS wants (hardware threads "states" on Intel Xeon Phi)

C-states (Haswell Mobile Processor)


Processor Package and Core C-States

Switching to Package IDLE state

C-states (Intel[®] Xeon Phi[™])

Intel[®] Xeon Phi[™] C-states In-Depth

Package Idle State	Core State	Uncore State	TSC/LAPIC	C3WakeupTi mer	PCI Express* Traffic
Auto C3 (initiated by PM SW can be overriden by MPSS)	Preserved	Preserved	Frozen	On expiration, package exits PC3	Package exits PC3
Deep C3	Preserved	Preserved	Frozen	No effect	Times out
PC6	Lost	Lost	Reset	No effect	Times out

Package Auto-C3: Ring and Uncore clock gated Package Deep-C3: VccP reduced Package C6: VccP is off (I.e. Cores, Ring and Uncore are powered down)

Software tools

	OS	CPU models	CPU consumption	Consumption of the other devices	Linkage with the code
Power Top	Linux, Solaris	Core2Duo	Modelled	Modelled	No
Joulemeter	Windows	Core2Duo	Modelled	Modelled	No
Intel Power Gadget	Windows, Linux, OS X	Core-i, XEON (Sandy Bridge) 	Direct measurement	_	No
XCode 5 Power Profiler	OS X	Core-i, XEON (Sandy Bridge) 	Combined indices	_	Statistics for single threads
Intel [®] VTune Amplifier	Windows, Linux	Core-i, XEON (Sandy Bridge) 	Direct measurement	_	Yes

Intel[®] VTune Amplifier is the most comfortable tool for developers

Packages and benchmarks

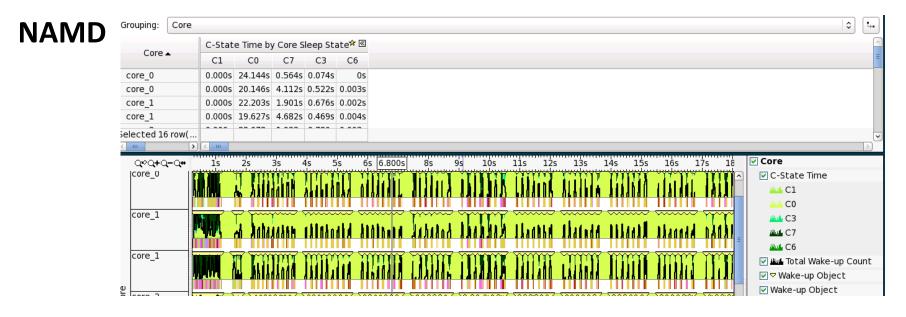
Open source and popular in industry HPC applications:

- **GAMESS** computational quantum chemistry.
- **GROMACS** molecular dynamics for modelling physicochemical processes.
- LAMMPS simulation of the classical molecular dynamics of particle system.
- NAMD an object oriented code for modelling molecular dynamics of big biomolecular systems.
- **OpenFOAM** computational hydrodynamics and work with fields (scalar, vector, tensor).

Difficulties and reefs

- 1. Building the packages with various implementations of MPI.
- 2. Need to balance between the size of task (sample), the size of application profile and its level of detail.
- Problems with detecting units under dynamic linking and detecting functions (methods) inside units.

Difficulties and reefs

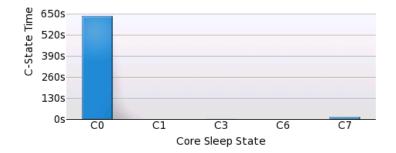

- 5. Collecting PMU events is limited with only one profiling process.
- Detecting the mode of profiling for one and all processes and the necessity in analysis of MPI scheduler energy consumption.
- 7. Adjusting hardware for maximum scalability of the applications (NUMA, hyper-threading).

Difficulties: dynamic MPI linking

Advanced Hotspots Hardware Event Counts viewpoint (change) ③

d 😁 Analysis Target 🙏 Analysis Type 📓 Summary 🔗 PMU Events	🗳 Caller/Callee 🏼 🍕 Top-down Tree	🗄 Tasks and Frames			
Grouping: Module / Function / Call Stack					
Madda (Duration (Call Charle	Hardware Ev	Hardware Event Count by Hardware Event Type			
Module / Function / Call Stack	Energy Core-	Energy Pack	Energy DRAM		
▶namd2	13,262,674,064	16,642,949,488	469,946,38		
Þ[Unknown]	417,066,448	522,906,672	14,126,76		
Þvmlinux (_)	300,799,840	386,657,728	11,820,30		
▽libmpi.so.4.1	270,844,064	339,839,936	9,358,56		
▶ func@0xd0150	175,018,896	219,609,904	6,047,60		
▶MPIDI_CH3I_Progress	80,318,144	100,763,760	2,787,32		
I_MPIintel_ssse3_rep_memcpy	4,101,904	5,150,928	133,92		
♦MPIDI_CH3_iSendv	2,053,728	2,580,160	69,95		
♦ MPID_nem_tcp_connpoll	1,631,216	2,047,744	52,44		
▷ MPI_lprobe	1,584,016	1,985,088	53,63		
♦ MPID_nem_tcp_poll	1,119,296	1,402,960	38,83		
▷MPID_nem_network_poll	630,288	793,632	24,67		
♦ MPIDI_nem_active_vc	580,944	730,560	22,27		
PMPI_Wtime	523,632	657,680	16,06		
♦ MPID_nem_tcp_vc_active	473,712	592,784	17,92		
♦ MPID_lprobe	467,712	586,832	15,90		
∮func@0x2b5df0	286,464	360,208	8,51		
♦MPIDI_CH3U_Recvq_FU	232,224	290,960	6,40		
♦ MPID_Isend	222,320	282,032	8,00		
▷MPID_nem_tcp_iStartContigMsg	175,136	219,952	6,08		
PMPI_Recv	120,752	150,528	5,88		
♦ MPID_Wtime_todouble	119,456	149,536	4,09		
▷MPIR_Test_impl	118,016	147,856	3,96		
▷MPI_lsend	117,744	147,056	6,27		
▷MPID_Recv	111,248	141,584	3,77		
∮func@0x205ba0	63,024	78,784	1,60		
▷MPID_nem_tcp_iSendContig	62,960	78,720	1,53		
PMPI_Get_count	62,272	77,184	2,11		

Difficulties: profiling mode for all / one process



LAMMPS

 \bigcirc

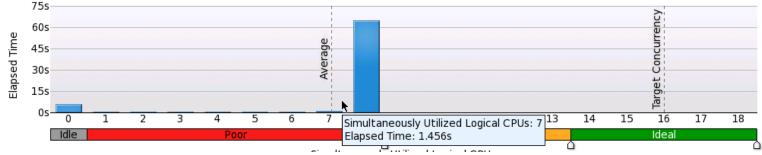
Elapsed Time per Core Sleep State Histogram 🗈

This histogram represents a breakdown of the Elapsed Time per Core Sleep State over all cores.

Difficulties: profiling mode for all / one process

			Caller/Callee 🗣 To	p-down Tree	
Grouping: Package / H/W Cont	ext / Function / Call Stac	k			≎ ⊑.
Package / H/W Context /	Hardware Even	t Count by Ha	rdware Event Type		5
Function / Call Stack	Energy Core	Energy Pack	Energy DRAM	Module	Functio
▼package_0	21,531,249,952	26,797,78	595,312,768	}	
Þcpu_0	2,525,701,456	3,138,866,	67,433,328	3	
¢cpu_5	2,714,464,656	3,379,069,	75,423,920)	
¢cpu_23	2,713,808,400	3,378,586,	75,347,472	2	
¢cpu_20	2,717,485,696	3,382,720,	75,422,784	ŧ	
¢cpu_19	2,713,301,264	3,377,333,	75,386,624	t I	
¢cpu_22	2,713,173,008	3,377,259,	75,405,232	2	
¢cpu_17	2,714,255,728	3,378,965,	75,419,728	3	
¢cpu_2	2,633,659,280	3,275,806,	71,787,424	ŧ	
¢cpu_18	84,475,184	107,835,680	3,623,130	5	
¢cpu_16	872,768	1,185,184	45,152	2	
¢cpu_1	52,512	155,440	15,728	3	
Рсри_З	0	0	()	
Þcpu_4	0	0	2,240)	
¢cpu_6	0	0	()	
Þcpu_7	0	0	()	
¢cpu_21	0	0	()	
Þpackage_1	21,071,926,512	26,283,35	604,383,312	2	
Selected 1 row(s):	21,531,249,952	26,797,78	595,312,768	3	
×			III	1	
્ય ્+ ્−્⇔ 5	s 10s	15s	20s 25s	30s	35s 40s 45s 50s
Thread (0x20 Thread (0x20 Thread (0x20 Thread (0x20 Thread (0x20 Thread (0x20 Thread (0x20	ontext Switches (0%)				

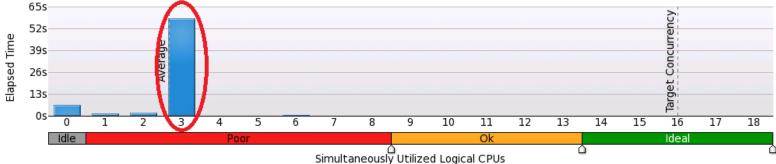
Difficulties: adjusting hardware (NUMA, hyberthreading)


CPU Power Management Configuration		Enable the power management features.
EIST Turbo Mode C1E Support CPU C3 Report CPU C6 Report CPU C7 Report Package C State limit	[Enabled] [Enabled] [Enabled] [Enabled] [Enabled] [D6]	
Energy/Performance Bias Factory Long Duration Power Limit Long Duration Power Limit Factory Long Duration Maintained Long Duration Maintained Recommended Short Duration Power Limit Short Duration Power Limit	[Balanced Performance] 95 Watts 0 10 s 0 1.2 * Long Duration 0	<pre>++: Select Screen f4: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit</pre>

Difficulties: adjusting hardware (NUMA, hyberthreading)

Without NUMA

📀 CPU Usage Histogram 🗈


This histogram represents a breakdown of the Elapsed Time. It visualizes what percentage of the wall time the specific number of CPUs were running simultaneously. CPU Usage may be higher than the thread concurrency if a thread is executing code on a CPU while it is logically waiting.

With NUMA

📀 CPU Usage Histogram 🗈

This histogram represents a breakdown of the Elapsed Time. It visualizes what percentage of the wall time the specific number of CPUs were running simultaneously. CPU Usage may be higher than the thread concurrency if a thread is executing code on a CPU while it is logically waiting.

How to profile

Methodology:

- 1. Use static linking.
- 2. Profile all CPUs at node.
- 3. Find a relative part of the scheduler energy consumption.
- 4. Profile one of the processes being run.
- 5. Detect the MPI library functions in the application unit.
- 6. Estimate the energy consumption relative parts of the application functions and MPI library.

How to run analyses

- Profiling must be run in the mode <u>Advanced Hotspot Analysis</u>.
- To run a profiler GUI use amplxe-gui.

	/home/testuser/in	tel/ampixe/projects/LAMMPS - II	ntel VTune Amp	lifier (на node30.cluster)	
Project Navigator	💹 🕼 🖆 🖻 👦 🕨 i	🗲 🕕 🛛 Welcome 🔹 New Am	×		=
/home/testuser/	💹 Choose Analysis 1	Гуре			Intel VTune Amplifier XE 2013
VIII I LAMMPS	d Å Analysis Type				Þ
_	 Analysis Type Analysis Type Analysis Type Algorithm Analysis Basic Hotspots Advanced Hotspots Advanced Hotspots Aconcurrency Aconcurrency Locks and Waits Intel Core 2 Processor. Nehalem / Westmere A Sandy Bridge / Ivy Bridge Access Contention Bandwidth Access Contention Branch Analysis Core Port Saturation Cycles and uOps Memory Access Port Saturation Singhts Corner Platform Power Analysis Custom Analysis Custom Analysis Custom Analysis Custom Analysis CPU Sleep States 0 	Advanced Hotspots Identify time-consuming code in y (formerly, Lightweight Hotspots) analysis by collecting call stacks, a and analyzing the CPI (Cycles Per analysis uses higher frequency said CPU sampling interval, ms: -Select a level of details provided Hotspots Hotspots, stacks and context Hotspots, call counts, stacks a Event mode: All Analyze user tasks So Details Events configured for CPU: Inter NOTE: For analysis purposes, Int the Sample After values in the depends on the value of the Du the Droiect Dreparties diplor Event Name CPU_CLK_UNHALTED.REF_TSC	uses the kemel d context switch a Instruction) met mpling at lower or 1 with event-base switches and context switches el(R) Xeon(R) E5 el VTune Amplifie table below by a ration time estin Sample After 2200000	Ariver and extends the hotspot Ind statistical call count data tric. At the default level this verhead compared to Bas ad sampling collection. Detailed ches processor er XE 2013 may adjust multiplier. The multiplier nate option specified in LBR Filter Reference cycl	Project Properties
		CPU_CLK_UNHALTED.THREAD	2200000		
		INST_RETIRED.ANY	2200000	Instructions re	
	< III >				Command Line

How to see the command line

- If you click the button Command Line..., you will see the command to run a console profiler.
- If you reset the check-box Hide knobs default values, the default keys will be added to the command line.

Copy Command Line to Clipboard	×
Command line:	
/usr/local/intel/vtune_amplifier_xe_2013/bin64/amplxe-cl -collect advanced-hotspots knob sampling-interval=1 -knob collection-detail=stack-sampling -knob event-mode knob enable-user-tasks=false -follow-child -mrte-mode=auto -target-duration- type=short -no-allow-multiple-runs -no-analyze-system -data-limit=500 -slow-fram threshold=40 -fast-frames-threshold=100 -app-working-dir /var/local/INTEL/src/ lammps-25Nov13/bench /var/local/INTEL/src/lammps-25Nov13/bench/lmp_impiMKL var x 2 -var y 2 -var z 2 <./in.lj	=all · es-
Сору	
□ Use -collect-with action	
□ Hide knobs with default values	
This command line can be used to collect data on a remote machine. To do this, pres the Copy button to copy the command line to the clipboard, and then run the command line remotely, copy the result directory back to the local host, and open t result file in the Amplifier XE.	
Help Close	

Adjusting the environment

.bashrc

.bashrc.namd_IntelMPI

module unload MPI-3/MVAPICH2	
module unload MPI-3/OpenMPI	
module unload MPI-3/MPICH	
module load MPI-3/IntelMPI	
export PATH=/var/local/INTEL/install/intelmpi-icc/third-	
<pre>party/src/NAMD_2.9_Source/Linux-x86_64-ics-2013-SP1:\$PATH</pre>	
export PATH=/var/local/INTEL/src/NAMD 2.9 Source/charm-6.4.0/bi	n:\$PATH

How to run the profiling

```
#!/bin/bash
DIR=$ (pwd)
WORKING DIR=$DIR/NAMD/small
# remove profile output folder
$DIR/RemoveDir.sh $PROFILE DIR
# rewrite bashrc
(cat $DIR/.bashrc) > ~/.bashrc
(echo source $DIR/.bashrc.namd IntelMPI) >> ~/.bashrc
source ~/.bashrc
# run
cd $WORKING DIR
mpirun -genv I MPI FABRICS=shm:tcp -genv I MPI WAIT MODE=1 \
-host node31 -n 1 -wdir=$WORKING DIR amplxe-cl -collect advanced-hotspots -knob
collection-detail=stack-sampling -r $PROFILE DIR - namd2 apoa1 : \
-host node31 -n 15 -wdir=$WORKING DIR namd2 apoa1 : \
-host node30 -n 16 -wdir=$WORKING DIR namd2 apoa1
```

Some notes about running

- The folder for collecting output data specified with the key –r is added with the rank number (for example, .0). So, if we specify
 - -r ~/profiles/LAMMPS

we'll have the folder

~/profile/LAMMPS.0

- The profiling output results should be watched via GUI.
- The profiling output data folder must be cleaned before each launching VTune Amplifier.

Power consumption metrics

- Energy Core, μJ energy dissipated on the core
- Energy Pack, μJ energy dissipated on the processor
- Energy DRAM, μJ energy dissipated on the memory unit
- You need to group the functions to detect which of them consume more energy (it is to be the package being run itself)

🛛 🖶 Analysis Target 🖄 Analysis Type 🕅 Summary 🤞	PMU Events 🛛 🖓 Caller/Calle	e 💊 Top-down Tree 🔣 Ta	asks and Frames				
Grouping: Module / Function / Call Stack							
Medule (Exection (Coll Stock	Hardware Event Count by Hardware Event Type						
Module / Function / Call Stack	Energy Core-	Energy Pack	Energy DRAM	Module			
Imp_impiMKL	12,980,515,552	16,394,977,472	373,273,584				
▷LAMMPS_NS::PairLJCut::compute	7,092,074,544	9,005,436,656	202,162,704	lmp_impiMKL			
LAMMPS_NS::Neighbor::half_bin_newton	2,226,706,512	2,801,350,288	70,635,696	lmp_impiMKL			
LAMMPS_NS::Comm::reverse_comm	1,328,104,464	1,660,942,272	36,841,392	Imp_impiMKL			
LAMMPS_NS::Comm::forward_comm	990,692,832	1,231,359,616	33,247,184	lmp_impiMKL			
▷LAMMPS_NS::Comm::borders	445,019,248	555,523,424	13,378,176	Imp_impiMKL			
▷LAMMPS_NS::Verlet::run	191,455,376	239,864,272	5,285,120	lmp_impiMKL			
▷LAMMPS_NS::FixNVE::initial_integrate	127,063,952	161,298,624	1,158,240	lmp_impiMKL			
LAMMPS_NS::Verlet::force_clear	88,995,872	115,051,120	611,088	lmp_impiMKL			
▷LAMMPS_NS::FixNVE::final_integrate	83,676,672	106,114,064	1,012,416	lmp_impiMKL			
▷LAMMPS_NS::Neighbor::check_distance	62,005,232	78,737,056	834,176	lmp_impiMKL			
▶LAMMPS_NS::Run::command	60,336,176	75,433,648	1,531,296	lmp_impiMKL			
▶LAMMPS_NS::Pair::sbmask	55,547,456	70,537,424	1,601,600	lmp_impiMKL			
▷LAMMPS_NS::AtomVecAtomic::unpack_reverse	55,506,720	70,200,784	1,472,528	lmp_impiMKL			
LAMMPS NS::Neighbor::build	28,384,688	37,128,016	284,992	Imp impiMKL			

Analysis of power consumption

- You need to switch on the mode <u>Hardware Events Counts</u> <u>Viewpoint</u>
- The tab Summary displays the general power consumption for the period of time while we were profiling the application

Ad	Advanced Hotspots Hardware Event Counts viewpoint (<u>change</u>)						
۲	Analysis Target 🗚 Analysis Type 🛅	Summary 🚱 PMU Even	ts 🔹 Caller/Callee 🗳 Top	-down Tree	🔁 Tasks and Fr		
$\overline{\mathbf{o}}$	Elapsed Time: [®] 43.736	S 🗎					
	CPU Time: [®] 19.479	9s					
	Paused Time: 💿 🛛 🔘)s					
$\overline{\mathbf{O}}$	Hardware Events 🗈						
	Hardware Event Type	Hardware Event Count	Hardware Event Sample Co	ount Even	ts Per Sample		
	CPU_CLK_UNHALTED.REF_TSC	42,853,836,454	19	,453	2200000		
	CPU_CLK_UNHALTED.THREAD	52,519,525,562	19	,449	2200000		
	Energy Core	1,225,176,768	19	,025	0		
	Energy DRAM	40,651,776	18	,905	0		
	Energy Pack	1,516,926,160	19	,027	0		
	INST_RETIRED.ANY	98,222,584,818	19	,610	2200000		
	Inactive Time	23,211,774,770	6	,332	0		
	Preemption Context Switches	6,333	6	,332	0		
	Synchronization Context Switches	69		69	0		
	Wait Time	36,803,932		69	0		

Analysis of power consumption

- To see individual consumption for groups of functions and units you can use the tab PMU Events
- You can use for grouping three parameters (Grouping:Module, Grouping:Function, Grouping:CallStack)
- If you expand the units, the most consuming functions will be displayed at the top

Advanced Hotspots Hardware Event Counts viewpoint (<u>change</u>)							
🔄 🖶 Analysis Target 🛝 Analysis Type 🛍 Summary 🔗 PMU Events 🍕 Caller/Callee 🚱 Top-down Tree 🛃 Tasks and Frames							
Grouping: Module / Function / Call St	ack						
Hardware Event Count by Hardware Event Type							
Module / Function / Call Stack	Energy Core v	Energy Pack	Energy DRAM	Module			
Þnamd2	1,155,887,840	1,430,962,288	38,463,696				
Þ vmlinux	25,460,512	31,622,592	799,616				
Þigb	22,929,840	28,363,488	706,176				
Þbridge	18,099,840	22,398,352	577,312				
⊽libmpi.so.4.1	1,237,472	1,526,320	37,280				
▶MPIDI_CH3_iSendv	1,108,000	1,367,024	33,184	libmpi.so.4.1			
▷MPID_nem_tcp_iSendContig	65,040	79,792	2,112	libmpi.so.4.1			
▷MPIDI_CH3_EagerContigIsend	64,432	79,504	1,984	libmpi.so.4.1			
▷[Import thunk writev]	0	0	0	libmpi.so.4.1			

Watching the collected data

		<no current="" p<="" th=""><th>roject> - Intel V</th><th>Tune Amplifier (на node31.cluste</th><th>r)</th><th></th><th></th><th></th><th></th></no>	roject> - Intel V	Tune Amplifier (на node31.cluste	r)				
💹 🕼 🖆 🗃 😥 🕨 🖨	Welcome	NAMD_p	×						
Advanced Hotspot	s Hardwar			nt (<u>change</u>) ⑦					
		mary 🚷 PMU E	vents 💊 Caller/	Calle Select viewpoint: Hardware Event Counts	nd Fram	es			
Grouping: Module / Function / C	Call Stack			Hardware Event Sample Counts					↓ ↓
Madula (Evention (Coll Stands	Hardware Even	t Count by Hard	ware Event Type	Hardware Issues	Sou.	Sta			
Module / Function / Call Stack	Energy Core	Energy Pack	Energy DRAM	Mod Hotspots	File	Add			
Þ[Unknown]	1,258,016	1,618,496	49,984	Hotspots		0			
Þbridge	23,349,824	28,955,712	754,192			0			
Þext4	186,336	230,592	6,592			0			
Þigb	28,265,056	35,063,488	908,176			0			
Þipv6	0	0	0			0			
Þld-2.12.so	12,848	27,552	2,240			0			
Þlibc-2.12.so	119,968	149,936	4,096			0			
▶libpthread-2.12.so	0	0	0			0			
Þnamd2	1,091,474,032	1,351,496,528	36,065,280			0			
Þnfs	165,264	209,040	6,784			0			
Þsunrpc	0	0	0			0			
Þvmlinux	26,536,288	32,927,792	824,848			0			
Selected 1 row(s):		1,618,496	49,984	ш					
Q≈ Q+ Q−Q+	5s	10s	15s	20s	25s		30s	35s	40s
Thread (0x54 Thread (0x54		a dar ar indini sakaka di babisi sa yasa da m	- handi si litik da bin da aran da ara	n dan bili dan sul annu kang mili yan shakela na sanuk dasha dinya ka an ana an akan ang				Ů, Ů,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Sorting by energy consumption

Advanced Hotspots Hardware Event Counts viewpoint (<u>change</u>) ③ ④ Analysis Target A Analysis Type B Summary & PMU Events Caller/Callee Caller/Callee Counts Type B Summary							
Grouping: Module / Function / Call Stack							
Mandada / Eventsia	Hardware Event Count by Hardware Event Type						
Module / Functio	on / Call Stack	Energy Core	Energy Pack	Energy DRAM			
▽ namd2		1,091,474,032	1,351,496,528	36,065,280			
▷ComputeNonbondedUtil::cale	c_pair_energy	218,274,416	269,682,176	7,351,360			
▷ComputeNonbondedUtil::cal	_pair_energy_fullelect	120,518,640	149,407,728	3,799,456			
♦ MPID_nem_mpich2_test_rec	V	114,659,056	142,278,064	3,866,752			
▷pairlist_from_pairlist		100,898,512	124,588,464	3,280,816			
▷ComputeNonbondedUtil::cal	c_self_energy	97,986,240	120,904,912	3,174,464			
▷ScriptTcl::run		62,542,080	77,539,312	2,030,240			
♦ MPIDI_CH3I_Progress		54,285,056	67,308,768	1,862,480			
♦ ComputeNonbondedUtil::cal	c_self_energy_fullelect	49,547,872	61,178,608	1,617,136			
▷CsdScheduler		28,025,920	34,720,320	907,536			
Parameters::assign_dihedral	index	27,026,336	33,420,160	996,416			
▷MPID_lprobe		25,093,296	31,166,688	868,112			

General energy consumption

Advanced Hotspots Hardware Event Counts viewpoint (<u>change</u>) 🕐 🗌

🔄 \ominus Analysis Target 🛝 Analysis Type 🔋 🕄 Summary 💊 PMU Events 📣 Caller/Callee 🔩 Top-down Tree 🔛 Tasks and I

📀 Elapsed Time: 🛛 42.609s 🗈

CPU Time: 💿	18.581s
Paused Time: 💿	0s

📀 Hardware Events 🗈

Hardware Event Type	Hardware Event Count	Hardware Event Sample Count	Events Per Sample
CPU_CLK_UNHALTED.REF_TSC	40,877,324,510	18,555	2200000
CPU_CLK_UNHALTED.THREAD	50,122,607,951	18,574	2200000
Energy Core	1,171,367,632	18,218	0
Energy DRAM	38,622,192	18,203	0
Energy Pack	1,450,679,136	18,220	0
INST_RETIRED.ANY	90,046,098,213	18,989	2200000
Inactive Time	18,768,191,932	6,769	0
Preemption Context Switches	6,770	6,769	0
Synchronization Context Switches	1,489	1,489	0
Wait Time	2,190,496,730	1,489	0

Analysis results

Intel MPI functions with the highest energy consumption

Module / Function / Call Stack	Energy Core	Energy Pack	Energy DRAM	Energy Core	Energy Pack	Energy DRAM
MPID_nem_mpich2_test_recv	114659056	142278064	3866752	53%	53%	54%
MPIDI_CH3I_Progress	54285056	67308768	1862480	25%	25%	26%
MPID_Iprobe	25093296	31166688	868112	12%	12%	12%
I_MPIintel_ssse3_rep_memcpy	4829472	5981408	147552	2%	2%	2%
MPIDI_CH3_iSendv	3424624	4246848	107248	2%	2%	2%
MPI_Iprobe	3172560	3928784	1068	1%	1%	0%
MPID_nem_tcp_connpoll	2458384	3044944	70	1%	1%	0%
MPID_nem_network_poll	2080144	2577088	70368	1%	1%	1%
MPI_Recv	1605376	1997280	54144	1%	1%	1%

Energy consumption relative parts for the application functions and MPI library

Application	Energy Core	Energy Pack	Energy DRAM	
namd2	1091474032	1351496528	36065280	
Without MPI	873696888	1081513344	28925454	
	Energy Core	Energy Pack	Energy DRAM	
Total Power	1171367632	1450679136	6 38622192	
Relative Power Consumption	Energy Core	Energy Pack	Energy DRAM	
mpiexec	0%	0%	0%	
MPI	19%	19%	18%	
namd2	75%	75%	75%	

LAMMPS

- Intel MPI the lowest consumption (absolute and relative values)
- MVAPICH the highest consumption

NAMD

- Worse scalability than for LAMMPS
- Parallel computing takes a more intensive data exchange
- <u>Possible conclusion</u>: if the package is a good scalable, then Intel MPI gives a better (lower) consumption; if the packages is a bad scalable, Intel MPI gives worse results.

GROMACS

- Lower MPI energy consumption than for LAMMPS and NAMD
- The function SENDRECV, taking the most energy consumption in GROMACS, requires less overheads and prevents CPU from switching C-state to C-7 (LAMPS and NAMD use SEND and RECV instead of SENDRECV)

GAMESS

- The relative part of MPI energy consumption is the lowest (< 1%)
- It is caused by the high part of computational code in compare with parallel processes synchronization

OpenFOAM

- Has the highest (and extremely high) MPI power consumption.
- Different MPI libraries show values around 50 %.
- In the scope of energy consumption optimization OpenFOAM requires a special attention.

- 1. Static MPI linking with one process profiling provides more correct results.
- 2. Running the package on several cluster nodes provides more correct and representative results.
- Running the package on several cluster nodes under one process profiling is possible for Intel MPI, MPICH, MVAPICH and Open MPI with some differences in the MPI scheduler commands.

- 5. Analyzing energy consumption on cluster, you need to take into account that CPU is in the state C0 the most time. Switching between the states happens only if intensive data exchange takes place (as it is in NAMD).
- Energy consumption of the application functions and MPI library depends on the used MPI implementation and the task you are solving (its sizes).

Common results

- The methodology how to profile applications for power consumption has been described and masterclasses on this topic have been created.
- The benchmark parameters for more representative power profiling have been adjusted.
- The distribution of energy consumption for different MPI implementations and for single MPI functions has been estimated for several HPC packages.

Thank you for your attention

www.singularis-lab.com

SINGULARIS LAB software development

MPI Application Energy Consumption