
High-Performance MPI Application
Energy Consumption Profiling

Victor Getmanskiy

Oleg Shapovalov

Efim Sergeev

Dmitry Kryzhanovsky

Singularis Lab, Ltd.

Volgograd State Technical University

http://www.singularis-lab.com/en.html
http://www.singularis-lab.com/en.html
http://www.singularis-lab.com/en.html

Outline

1. Power management in Processors

2. Energy consumption profiling

3. Packages and benchmarks

4. Difficulties and reefs

5. How to profile: methodology

6. Analysis results

7. Conclusions

8. Common results

MPI Application Energy Consumption 2

MPI Application Energy Consumption 3

20-th place Dell C8220X Cluster, Intel

Xeon E5-2680v2 10C 2.8GHz,

InfiniBand 4x FDR, Intel Xeon Phi 7120P

2.39 GFlops/W

Intel® Xeon Phi™

1-st place ASUS ESC4000 FDR/G2S,

Intel Xeon E5-2690v2 10C 3GHz,

Infiniband FDR, AMD FirePro S9150

5.27 GFlops/W

Energy-efficient supercomputers

Scope of power analysis

• Hardware analysis
– analysis of computational system consumption

– no analysis of single application consumption

• Software analysis at application level (Power Top)
– analysis of single application consumption

– detecting the consumption sources (IO, memory, HDD,
CPU etc.)

• Software analysis at function level (Intel® VTune
Amplifier)
– analysis of consumption of single functions and units

– detecting the functions (methods) requiring energy
consumption optimization by the developer

MPI Application Energy Consumption 4

C-states of Intel® Xeon Phi™

CPU C-states are core power states requested by the Operating
System Directed Power Management (OSPM) infrastructure. C1-
Cn states describe states where the processor clock is inactive
and different parts of the processor are powered down.

MPI Application Energy Consumption 5

C0 Full on

C1/C1E Auto-halt

C3 Auto/Deep Sleep

C6 Deep Power Down

C-states of Intel® Xeon Phi™

MPI Application Energy Consumption 6

P-states and C-states

MPI Application Energy Consumption 7

C-states – Processor Power States

P-states – Processor Performance Power States

P-states apply only to C0 state of processor and control

voltage and clock frequency

MPI Application Energy Consumption 8

Processor C-state = Min(core C-states)

Core C-state = Minimum barrier(set of all logical

C-states)

Logical C-state = anything the OS wants

(hardware threads “states” on Intel Xeon Phi)

P-state C-state

Processor + (P) + (PC)

Core - + (C)

Logical - + (LC)

Power states summary

C-states (Haswell Mobile Processor)

MPI Application Energy Consumption 9

G, S and C State Combinations

Global (G)

State

Sleep

(S) State

Processor

Core

(C) State

Processor

State

System

Clocks

Description

G0 S0 C0 Full On On Full On

G0 S0 C1/C1E Auto-Halt On Auto-Halt

G0 S0 C3 Deep Sleep On Deep Sleep

G0 S0 C6/C7 Deep Power

Down

On Deep Power Down

G1 S3 Power off Off, except RTC Suspend to RAM

G1 S4 Power off Off, except RTC Suspend to Disk

G2 S5 Power off Off, except RTC Soft Off

G3 N/A Power off Power off Hard off

MPI Application Energy Consumption 10

Switching to Package IDLE state

C0 C1 C3 C6

PC0

PC3 AUTO

PC3 DEEP

PC6

MPI Application Energy Consumption 11

C-states (Intel® Xeon Phi™)

Package Idle
State

Core State Uncore State TSC/LAPIC C3WakeupTi
mer

PCI Express*
Traffic

Auto C3
(initiated by
PM SW can
be overriden
by MPSS)

Preserved Preserved Frozen On
expiration,
package exits
PC3

Package exits
PC3

Deep C3 Preserved Preserved Frozen No effect Times out

PC6 Lost Lost Reset No effect Times out

MPI Application Energy Consumption 12

Package Auto-C3: Ring and Uncore clock gated

Package Deep-C3: VccP reduced

Package C6: VccP is off (I.e. Cores, Ring and Uncore are powered down)

Intel® Xeon Phi™ C-states In-Depth

Software tools

Intel® VTune Amplifier is the most comfortable tool for developers

MPI Application Energy Consumption 13

OS CPU models CPU
consumption

Consumption
of the other

devices

Linkage with
the code

Power Top Linux,
Solaris

Core2Duo … Modelled Modelled No

Joulemeter

Windows Core2Duo … Modelled Modelled No

Intel Power
Gadget

Windows,
Linux, OS X

Core-i, XEON
(Sandy Bridge)
…

Direct
measurement

– No

XCode 5
Power Profiler

OS X Core-i, XEON
(Sandy Bridge)
…

Combined
indices

– Statistics for
single
threads

Intel ® VTune
Amplifier

Windows,
Linux

Core-i, XEON
(Sandy Bridge)
…

Direct
measurement

– Yes

Packages and benchmarks

Open source and popular in industry HPC

applications:

• GAMESS – computational quantum chemistry.

• GROMACS – molecular dynamics for modelling
physicochemical processes.

• LAMMPS – simulation of the classical molecular
dynamics of particle system.

• NAMD – an object oriented code for modelling
molecular dynamics of big biomolecular systems.

• OpenFOAM – computational hydrodynamics and
work with fields (scalar, vector, tensor).

MPI Application Energy Consumption 14

Difficulties and reefs

1. Building the packages with various implementations
of MPI.

2. Need to balance between the size of task (sample),
the size of application profile and its level of detail.

3. Problems with detecting units under dynamic
linking and detecting functions (methods) inside
units.

MPI Application Energy Consumption 15

Difficulties and reefs

5. Collecting PMU events is limited with only one
profiling process.

6. Detecting the mode of profiling for one and all
processes and the necessity in analysis of MPI
scheduler energy consumption.

7. Adjusting hardware for maximum scalability of the
applications (NUMA, hyper-threading).

MPI Application Energy Consumption 16

Difficulties: dynamic MPI linking

MPI Application Energy Consumption 17

Difficulties: profiling mode for all / one process

MPI Application Energy Consumption 18

NAMD

LAMMPS

Difficulties: profiling mode for all / one process

MPI Application Energy Consumption 19

Difficulties: adjusting hardware (NUMA,
hyberthreading)

MPI Application Energy Consumption 20

Difficulties: adjusting hardware (NUMA,
hyberthreading)

MPI Application Energy Consumption 21

Without NUMA

With NUMA

How to profile

MPI Application Energy Consumption 22

Methodology:

1. Use static linking.

2. Profile all CPUs at node.

3. Find a relative part of the scheduler energy
consumption.

4. Profile one of the processes being run.

5. Detect the MPI library functions in the application
unit.

6. Estimate the energy consumption relative parts of
the application functions and MPI library.

How to run analyses

• Profiling must be run in the mode Advanced Hotspot Analysis.

• To run a profiler GUI use amplxe-gui.

MPI Application Power Consumption Recipes 23

How to see the command line

• If you click the button Command Line…, you will see the
command to run a console profiler.

• If you reset the check-box Hide knobs default values , the
default keys will be added to the command line.

MPI Application Power Consumption Recipes 24

Adjusting the environment

MPI Application Energy Consumption 25

.bashrc
.bashrc

Source global definitions

if [-f /etc/bashrc]; then

 . /etc/bashrc

fi

User specific aliases and functions

export PATH=/usr/gcc/gcc470/bin:$PATH

export LD_LIBRARY_PATH=/usr/gcc/gcc470/lib64:/usr/gcc/gcc470/lib:$LD_LIBRARY_PATH

source /opt/intel/compilers/composerxe/mkl/bin/mklvars.sh intel64

source /opt/intel/compilers/composerxe/bin/compilervars.sh intel64

.bashrc.namd_IntelMPI
module unload MPI-3/MVAPICH2

module unload MPI-3/OpenMPI

module unload MPI-3/MPICH

module load MPI-3/IntelMPI

export PATH=/var/local/INTEL/install/intelmpi-icc/third-

party/src/NAMD_2.9_Source/Linux-x86_64-ics-2013-SP1:$PATH

export PATH=/var/local/INTEL/src/NAMD_2.9_Source/charm-6.4.0/bin:$PATH

How to run the profiling

MPI Application Energy Consumption 26

#!/bin/bash

DIR=$(pwd)

WORKING_DIR=$DIR/NAMD/small

remove profile output folder

$DIR/RemoveDir.sh $PROFILE_DIR

rewrite bashrc

(cat $DIR/.bashrc) > ~/.bashrc

(echo source $DIR/.bashrc.namd_IntelMPI) >> ~/.bashrc

source ~/.bashrc

run

cd $WORKING_DIR

mpirun -genv I_MPI_FABRICS=shm:tcp -genv I_MPI_WAIT_MODE=1 \

-host node31 -n 1 -wdir=$WORKING_DIR amplxe-cl -collect advanced-hotspots -knob

collection-detail=stack-sampling -r $PROFILE_DIR – namd2 apoa1 : \

-host node31 -n 15 -wdir=$WORKING_DIR namd2 apoa1 : \

-host node30 -n 16 -wdir=$WORKING_DIR namd2 apoa1

Some notes about running

• The folder for collecting output data specified with the key –r
is added with the rank number (for example, .0). So, if we
specify
-r ~/profiles/LAMMPS

we’ll have the folder
~/profile/LAMMPS.0

• The profiling output results should be watched via GUI.

• The profiling output data folder must be cleaned before each
launching VTune Amplifier.

MPI Application Power Consumption Recipes 27

Power consumption metrics

• Energy Core, μJ – energy dissipated on the core

• Energy Pack, μJ – energy dissipated on the processor

• Energy DRAM, μJ – energy dissipated on the memory unit

• You need to group the functions to detect which of them
consume more energy (it is to be the package being run itself)

MPI Application Power Consumption Recipes 28

Analysis of power consumption

• You need to switch on the mode Hardware Events Counts
Viewpoint

• The tab Summary displays the general power consumption for
the period of time while we were profiling the application

MPI Application Power Consumption Recipes 29

Analysis of power consumption

• To see individual consumption for groups of functions and
units you can use the tab PMU Events

• You can use for grouping three parameters (Grouping:Module,
Grouping:Function, Grouping:CallStack)

• If you expand the units, the most consuming functions will be
displayed at the top

MPI Application Power Consumption Recipes 30

Watching the collected data

MPI Application Energy Consumption 31

Sorting by energy consumption

MPI Application Energy Consumption 32

General energy consumption

MPI Application Energy Consumption 33

Analysis results

MPI Application Energy Consumption 34

Intel MPI functions with the highest energy consumption

Module / Function / Call Stack Energy Core Energy Pack Energy DRAM Energy Core Energy Pack Energy DRAM

MPID_nem_mpich2_test_recv 114659056 142278064 3866752 53% 53% 54%

MPIDI_CH3I_Progress 54285056 67308768 1862480 25% 25% 26%

MPID_Iprobe 25093296 31166688 868112 12% 12% 12%

__I_MPI___intel_ssse3_rep_memcpy 4829472 5981408 147552 2% 2% 2%

MPIDI_CH3_iSendv 3424624 4246848 107248 2% 2% 2%

MPI_Iprobe 3172560 3928784 1068 1% 1% 0%

MPID_nem_tcp_connpoll 2458384 3044944 70 1% 1% 0%

MPID_nem_network_poll 2080144 2577088 70368 1% 1% 1%

MPI_Recv 1605376 1997280 54144 1% 1% 1%

Energy consumption relative parts for the application functions and MPI library
Application Energy Core Energy Pack Energy DRAM

namd2 1091474032 1351496528 36065280

Without MPI 873696888 1081513344 28925454

 Energy Core Energy Pack Energy DRAM

Total Power 1171367632 1450679136 38622192

Relative Power Consumption Energy Core Energy Pack Energy DRAM

mpiexec 0% 0% 0%

MPI 19% 19% 18%

namd2 75% 75% 75%

Conclusions

MPI Application Energy Consumption 35

LAMMPS

• Intel MPI – the lowest consumption (absolute and relative
values)

• MVAPICH – the highest consumption

NAMD

• Worse scalability than for LAMMPS

• Parallel computing takes a more intensive data exchange

• Possible conclusion: if the package is a good scalable, then
Intel MPI gives a better (lower) consumption; if the packages
is a bad scalable, Intel MPI gives worse results.

Conclusions

MPI Application Energy Consumption 36

GROMACS

• Lower MPI energy consumption than for LAMMPS and NAMD

• The function SENDRECV, taking the most energy consumption
in GROMACS, requires less overheads and prevents CPU from
switching C-state to C-7 (LAMPS and NAMD use SEND and
RECV instead of SENDRECV)

GAMESS

• The relative part of MPI energy consumption is the lowest (<
1%)

• It is caused by the high part of computational code in
compare with parallel processes synchronization

Conclusions

MPI Application Energy Consumption 37

OpenFOAM

• Has the highest (and extremely high) MPI power
consumption.

• Different MPI libraries show values around 50 %.

• In the scope of energy consumption optimization
OpenFOAM requires a special attention.

Conclusions

MPI Application Energy Consumption 38

1. Static MPI linking with one process profiling
provides more correct results.

2. Running the package on several cluster nodes
provides more correct and representative results.

3. Running the package on several cluster nodes under
one process profiling is possible for Intel MPI,
MPICH, MVAPICH and Open MPI with some
differences in the MPI scheduler commands.

Conclusions

MPI Application Energy Consumption 39

5. Analyzing energy consumption on cluster, you need
to take into account that CPU is in the state C0 the
most time. Switching between the states happens
only if intensive data exchange takes place (as it is in
NAMD).

6. Energy consumption of the application functions
and MPI library depends on the used MPI
implementation and the task you are solving (its
sizes).

Common results

MPI Application Energy Consumption 40

• The methodology how to profile applications for
power consumption has been described and master-
classes on this topic have been created.

• The benchmark parameters for more representative
power profiling have been adjusted.

• The distribution of energy consumption for different
MPI implementations and for single MPI functions
has been estimated for several HPC packages.

MPI Application Energy Consumption

www.singularis-lab.com

41

Thank you for your attention

