Intel® Xeon Phi™ Coprocessor
Lab Instructions
C ++ Version

Introduction

Lesson 1: Converting Code for Offload

Lesson 2: Building and Running a “Native” Intel® Xeon Phi™ Coprocessor Application
Lesson 3: Data Persistence

Lesson 4: Asynchronous data transfers

Lesson 6: Simultaneous Computation

Lesson 7: Getting Code to Vectorize

Lesson 8: Finding Good Offload Candidates

Introduction

Goal

This document will help you get started writing code and running applications on a
development platform (host) that includes the Intel® Xeon Phi™ coprocessor through a
series of simple, self-guided labs. It demonstrates basic build and run procedures, and
covers a few basic optimization techniques.

Before you Start

° Please read through the ‘“Intel® Xeon Phi™ coprocessor Quick Start Developer’s
Guide”.

° This document assumes that the development machine is Tornado cluster, available
by tornado.hpc.susu.ac.ru via ssh.

° Please read Cluster Notes before start.

° The labs in this document require the following Intel® Software to be installed on the

Development Platform:
o Intel® Manycore Platform Software Stack. (MPSS)
o Intel® C++ Composer XE 2013 or higher.
o Intel® Vtune™ Amplifier XE 2013 or higher.

Useful References

For more information on Programming and Compiling for Intel® Many Integrated Core (Intel®
MIC) architecture, please refer to:

http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-
core-architecture

https://software.intel.com/sites/default/files/managed/ee/4e/intel-xeon-phi-coprocessor-quick-start-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/ee/4e/intel-xeon-phi-coprocessor-quick-start-developers-guide.pdf
http://software.intel.com/mic-developer
http://tornado.hpc.susu.ac.ru/
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture

Lesson 1: Converting Code for Offload

Goal
You will learn how to convert pure host code into a heterogeneous form that runs partially on
the host and partially on the Intel® Xeon Phi™ coprocessor using the explicit offload model.

Useful References

e Compiler reference manual :
C/C++:
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-I|
in/

e Example code showing various subtleties of the offload syntax:
C/C++: Jopt/software/intel/composerxe/Samples/en_US/C++/mic_samples

Lab

Let's Revise Offload using Explicit Copies

C/C++ Syntax Semantics

Offload pragma #pragma offload Allow next statement to
execute on Intel® Xeon
Phi™ coprocessor or host

CPU
Keyword for variable & | __ attribute__ ((target(mic))) Compile function for, or
function definitions allocate variable on, both

CPU and Intel® Xeon
Phi™ coprocessor

Entire blocks of code #pragma offload_attribute(push, Mark entire files or large
target(mic)) blocks of code for

generation on both host
CPU and Intel® Xeon

. Phi™ coprocessor
#pragma offload_attribute(pop)

Inputs in(var-list modifiers) Copy from host to
coprocessor

Outputs out(var-list modifiers) Copy from coprocessor to
host

https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-DC02F0FB-12D1-4DEF-8268-B02734B62462.htm
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-DC02F0FB-12D1-4DEF-8268-B02734B62462.htm

Let's get some simple matrix multiply code running on the Intel® Xeon Phi™ coprocessor
and see what happens.

Set up the compiler environment:

#source /opt/software/intel/composerxe/bin/compilervars.sh intel64
Copy omp_offload_start.cpp to omp_offload.cpp:

#cp omp offload start omp offload.cpp

Add code to offload the OpenMP section and to offload the test for whether or not the code
is running on the coprocessor. Check the references above in case you forget the syntax.

Compare omp_offload.cpp to omp_offload_ours.cpp to make sure you got everything.
#diff omp offload.cpp omp offload ours.cpp

Make sure the number of OpenMP threads is unconstrained:

unset [env] OMP NUM THREADS

Build the result for host-only and note the vectorization messages:

icc -vec-report3 -openmp -no-offload omp offload.cpp main.cpp
Build the result for offload and note how the vectorization messages change:

icc -vec-report3 -openmp omp offload.cpp main.cpp

You probably saw the number of messages increase. This is because your single compile
command is actually causing two compilations to occur under the covers: one for the host
system and one for the coprocessor. Each produces its own messages and each may reach
different optimization decisions. All messages containing *MIC* are caused during the

compilation for the coprocessor.

Run the result with different numbers of threads on the coprocessor so that you can see the
scaling:

export MP NUM THREADS=<number>
#./a.out 2048

Number of threads Runtime (seconds)

1

16

32

64

93

128

204

What sort of scaling do you see?

Now let’s try a slightly more advanced example of offloading.

Make a copy of mCarlo_offload_start.cpp:

#cp mCarlo offload start.cpp mCarlo myoffload.cpp

Add code to offload the OpenMP section at line 65 and code to test whether or not the code
is running on the coprocessor. Note how we had to move the VSLStreamStatePtr definitions
within the offload statement block (compare to mCarlo_offload_ours.cpp).

- Build the result:

icc -mkl -openmp mCarlo myoffload.cpp

If you get a message complaining that omp_get_max_threads() is not defined for offload,
look up the #pragma offload_attribute(push.target(mic)) pragma in the offload compiler
guide and modify your code to make those warnings go away.

Now run.

./a.out
Compare your result to mCarlo_offload_ours.cpp

Bonus

If there is time, experiment with the H_TIME and H_TRACE environment variables and try
to interpret their output.

What we learned

e How to use #pragma offload target(mic) in(var:elements) to send data to the card

https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-DC02F0FB-12D1-4DEF-8268-B02734B62462.htm

e How to use __attribute__((target(mic)) to mark a function for compilation on the
Intel® Xeon Phi™ coprocessor as well as the host (or to define a variable on both
architectures)

e How to use the __MIC__ preprocessor variable to mark code as executing only on
the host or only on the coprocessor.

e How to use #pragma offload_attribute(push,target(mic)) and #pragma
offload_attribute(pop) to mark large bodies of code for offload

e (optional) How to monitor what is happening during the offload process using
H_TRACE and H_TIME.

Lesson 2: Building and Running a “Native” Intel® Xeon Phi™
Coprocessor Application

Goal

You will learn how to build and run applications that are intended purely for use on the Intel®
Xeon Phi™ coprocessor.

Useful References

e |Intel® Xeon Phi™ coprocessor Quick Start Developer's Guide (found on
http://software.intel.com/mic-developer).
e Read Cluster Notes before.
Lab

“Native” Intel® Xeon Phi™ coprocessor applications treat the coprocessor as a standalone
multicore computer. Once the binary is built on your host system, it is copied to the
“filesystem” on the coprocessor along with any other binaries and data it requires. The
program is then run from the ssh console.

Build our sample application with the —mmic flag (a single-file version of the matrix multiply
code — you are welcome to inspect it first):

#icc —mmic -vec-report3 —-openmp omp offload native.cpp

Note that your home folder is a NFS shared folder and copy binaries files to the
coproccessor not required. Just connect to the coprocessor by ssh.

#ssh ‘hostname’ -micO
#cd ./<folder with binaries>
./a.out 2048 64

http://software.intel.com/mic-developer

If you see error message about missing OpenMP runtime library, add path to OpenMP
runtime libraries:

fexport

LD LIBRARY PATH=/opt/software/intel/composer xe 2013.1.117/compiler
/lib/mic:$LD_ LIBRARY PATH

Now try to run again on the coprocessor (in the ssh window).
~# ./a.out 2048 64

Notes:
o Yeu ean use sfip; ssh and sep if you want: See Intel® Xeon Phill coprocesser Quick
S Devel s Gid
fites-andrun-the-program-on-the-coprocesser:
o | your program requires data to run; you will have to eopy it to the coprocesser as

e Any time when you want to run native programm on Xeon Phi™, you can modify
$LD_LIBRARY_PATH for set path to dependencies.

o Be sure to clean up any binaries or data you copied to the card or that were
generated when your program ran: We have seen numerous eases ir which an
offloaded application that is elose to the system memory Himit falls beeause semeene

So, why would you use the “Native” programming model? As you will notice after
programming the Intel® Xeon Phi™ coprocessor for a while, using the offload compiler
model can introduce a lot of overhead into your runtime if you aren’t careful about it. It also
hides a lot of the complexity of getting code and data to the coprocessor. But what if you just
want to see how fast/slow this coprocessor is without all that overhead or want to have much
more control over data movement during optimization? This is when the native programming
model might appeal, since it gets you “down to the metal” on the coprocessor with no
intermediate layers eating up application time.

In its current implementation all “communication” to and from the coprocessor is via ssh and
scp utility, which happens in a human-scale timeframe. There is no way for the program on
the coprocessor to communicatio.e with the host system directly in computer-scale
timeframes when doing native programming.

Bonus

Make a “native” version of the Monte Carlo program. You will have to worry about getting the
MKL library over as well.

Build on host
#icc -mmic -openmp -mkl mCarlo myoffload.cpp

Connect to mic and run:
source /opt/software/intel/composerxe/mkl/bin/mklvars.sh mic
./a.out

What we learned

How to cross-compile an application for the Intel® Xeon Phi™ coprocessor using the —mmic
flag

Lesson 3: Data Persistence

Goal

You will become familiar with the offload programming pattern needed to separate data
transfer from computation and the reuse of data from one offload call to another.

Useful References

Compiler reference manual :

o C/C++:

http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe

[compiler/cpp-lin/index.htm

e Read Cluster Notes before

e Example code showing various subtleties of the offload syntax:
C/C++: Jopt/intel/composerxe/Samples/en_US/C++/mic_samples

Lab

Code of any complexity tends to do things in stages. This can complicate things when
multiple stages need to execute on a coprocessor, and you need the results from one stage
to persist until the next call. In this section, we will explore how this is done.

Revies — Offload using Explicit Copies — Modifiers

Clauses / Modifiers

Syntax

Semantics

Non-copied data

nocopy(var-list modifiers)

Data is local to target

Specify pointer length

length(element-count-expr)

Copy N elements of the
pointer’s type

Control pointer memory
allocation

alloc_if (condition)

Allocate memory to hold
data referenced by pointer if
condition is TRUE

Control freeing of pointer
memory

free_if (condition)

Free memory used by
pointer if condition is TRUE

Control target data
alignment

align (expression)

Specify minimum memory
alignment on target

Take a look at omp_offload_ours.cpp and note how the data transfer and work happen in a

single offload call.

http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-lin/index.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-lin/index.htm

Let us artificially change this into three stages and observe what happens.

Start with omp_3stageoffload_nopersist.cpp. Build it and observe what happens when it
runs:

icc -03 omp 3stageoffload nopersist.cpp -o mmul nopersist

#./mmul nopersist 1024

You will see an error message.
Now compare omp_3stageoffload_nopersist.cpp to omp_3stageoffload_persist.cpp

diff omp 3stageoffload nopersist.cpp omp 3stageoffload persist.cpp
Build and run omp_3stageoffload_persist.cpp:

icc -03 omp 3stageoffload persist.cpp -o mmul persist

#./mmul persist 1024

Did you get the expected result?

Make sure you understand how the alloc_if, free_if, and nocopy qualifiers are used in the

offload statement. Refer to the compiler reference manual.

Bonus
Implement a similar data transfer pattern in another small application

What we learned

How the alloc_if, free_if, and nocopy qualifiers are used to control the allocation and
freeing of buffers used on offload statements.

10

Lesson 4: Asynchronous data transfers

Goal

You will become familiar with the use of asynchronous data transfers needed to overlap the
data transfer and computation on the coprocessor.

Useful References
e Compiler reference manual :
C/C++:
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe
[compiler/cpp-lin/index.htm

Codes often operate on blocks of data which require the data block to be moved to the
coprocessor at the start of the computation and back to the host at the end. Such codes
benefit by the use of asynchronous data transfers where the coprocessor computes one
block of data while another block is being transferred from the host. Asynchronous transfers
can also improve performance for codes requiring multiple data transfers between the host
and the coprocessor.

Take a look at do_offload function in async_start.cpp and notice how the two arrays are
processed one after the other using offload statements.

Change this code so that you transfer one array while the other one is computing. Modify the
do_async function to use asynchronous data transfers.

Compare async_start.cpp to async_ours.cpp to make sure you got everything.
Build and run the program.

icc -o async.out async start.cpp
./async.out

Notice that do_async function is faster compared to do_offload function.
Make sure you understand how the signal and wait qualifiers are used in the offload
statements. Refer to the compiler reference manual for more details.

You may have noticed that the above program provided only a small improvement in
performance. To get substantial performance improvements, there should be a larger overlap
between the data transfers and the computation.

Take a look at async_advanced.cpp. Notice how the arrays have broken down into smaller
blocks and then processed. Breaking down the array into smaller blocks allows more for over
overlap between the data transfers and computation.

11

Also, observe how only a small portion of the array is transferred over to the coprocessor by
using the array notations.

Build and run the code, and observe the performance.

icc -o async advanced.out async advanced.cpp
./async_advanced.out

What we learned

e How to use #pragma offload_transfer to start a non-block transfer to the
COpProcessor.

e How to use signal and wait qualifiers with the offload statement to ensure
completion of data transfers before a compute.
e How to use array notations to transfer a portion of the array to the coprocessor.

12

Lesson 6: Getting Code to Vectorize

Goal

You will become familiar using and interpreting the vectorization and optimization reports
produced by the compiler.

Useful References
e Compiler documentation: C/C++:
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe
[compiler/cpp-lin/index.htm
e Read Cluster Notes before.

Lab
One important skill to master when using compiler-based auto-vectorization is how to listen
to the compiler. This involves using some compiler options that let the compiler tell you about

the decisions it makes and the reasons it makes them.

Code that doesn’t vectorize

Inspect serial.cpp. Now run the following command:
#icc -mmic -vec-report3 serial.cpp main.cpp

- Did any of the loops vectorize?
- Why not?

There are two variants of this diagnostic message:

1. vector dependence: assumed ANTI dependence between xxxx line <val> and xxxx line
<val>

2. vector dependence: assumed FLOW dependence between xxxx line <val> and xxxx line
<val>

Cause:

1. ANTI dependence stands for "READ before WRITE" scenario when considering the vector
version of a loop. In the below, when the compiler auto-vectorizer tries to vectorize for SSE2
architecture by default, it chooses a vector length of 4 (since data type it operates on is int).
But when considering a vector operand instead of scalar operands for this loop, there is an
overlap between the input vector and output vector. The overlap is such those overlapped
locations are read before latest value is written into them.

2. FLOW dependence stands for "WRITE before READ" scenario when considering the
vector version of a loop. In the below, when the compiler auto-vectorizer tries to vectorize for
SSE2 architecture by default, it chooses a vector length of 4 (since data type it operates on is
int). But when considering a vector operand instead of scalar operands for this loop, there is

13

http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-lin/index.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-lin/index.htm

an overlap between the input vector and output vector. The overlap is such those overlapped
locations are written into before their initial value is read for the computation.

Note: If you like to see lots of diagnostic information, build your entire project with this option.
For more terse output, we recommend manually compiling just the files you are trying to
optimize with the vec-report flag switched on while you try to improve vectorization.

Getting vectorization by following compiler advice
Run the following command:

icc -mmic —-guide-vec serial.cpp

Look at the messages and advice given by the compiler (look only at the “ALTERNATIVE”
suggestion). Do you understand what it is telling you?

Inspect restrict.cpp. Does it implement the compiler's suggestions properly? How does it
compare to serial.cpp?

Definition: By qualifying a pointer with the restrict keyword, you assert that an object
accessed by the pointer is accessed by only that pointer in the given scope

Run the following command:

icc -mmic -restrict -vec-report3 restrict.cpp

Did any of the loops vectorize this time?

Run the following command (see_-opt-report):

icc -mmic -restrict -opt-report restrict.cpp

Can you tell what the compiler did to vectorize the loop. (Hint: Look at the High Level

Optimizer Report)?

Changing the compiler’s vectorization decisions using pragmas

a) By its nature, the compiler has to be conservative about what it can vectorize. In this case,
since serial.cpp and main.cpp are separate source files, it can’t tell whether the input arrays
are different arrays, overlap, or point to the same arrays, so we need to help it.

e Inspect pragma.cpp.How does it compare to serial.cpp?
Definition: #pragma ivdep instructs the compiler to ignore assumed vector dependencies.

To ensure correct code, the compiler treats an assumed dependence as a proven
dependence, which prevents vectorization.

14

https://software.intel.com/ru-ru/node/513172
https://software.intel.com/ru-ru/node/512991

Now issue the following command:
icc —-mmic -vec-report3 pragma.cpp

e Did the code vectorize?
o Why?

b) The previous pragmas told the compiler not to make some assumptions that would
prevent vectorization of the inner-most loop . The #pragma simd directive is quite different in
that it tells the compiler that you know this loop will vectorize under all inputs. This is strong
stuff, so use it with care.

e Inspect psimd.cpp. How does it compare to serial.cpp?

[]
Definition: The pragma simd enforces vectorization of innermost loops.
Now issue the following command:

icc —-mmic -vec-report3 psimd.cpp

e Did the code vectorize?
e Why?

Bonus
Apply the same triage procedure to another trivial loop of your choosing

What we Learned

e How to use the —vec-report compiler switch to determine which loops and functions
are vectorizing

e How to use the —opt-report compiler switch to understand some of the ways the
compiler transforms your code when compiling it

e How to use the —guide-vec compiler switch to get advice from the compiler on how
to transform your code so that it will vectorize

15

Lesson 7: Finding Good Offload Candidates

Goal
e Using Loop Profiler, code inspection, and a little math, you will figure out which, if
any, of the three provided serial workloads are good candidates for offloading to the
Intel® Xeon Phi™ coprocessor.
Read Cluster Notes before
Read Intel tools installation instructions
Lab

We need to discover the hot functions and loops in the sample code, and understand the
data that are passed to/from those hot functions and loops. Rather than talk about VTune™
Amplifier XE at the moment, we'll use the compiler to do this for us.

Build each example at the —O1 optimization level with compiler profiling turned on.

icc -0l -profile-functions -profile-loops=all
-profile-loops-report=2 -liomp5 -lpthread common.cpp
lifeserial.cpp -o life

#icc -01 -profile-functions -profile-loops=all
-profile-loops-report=2 -mkl mCarlo.cpp -o mCarlo

#icc -01 -no-offload -profile-functions -profile-loops=all
-profile-loops-report=2 main.cpp serial.cpp -0 serial

Run each program
e /life virus.dat

Will run for about 30 seconds
e ./mCarlo

Will run for about 20 seconds
e ./serial 1024

Will run for about 5 seconds

When we ran the programs, the compiler generated profiling information for every function
and loop it encountered. Let us look at these data.

Look at the resulting xml files, copy files from cluster to your notebook/desktop and open
files by loopprofileviewer located at (C:\Program Files (x86)\Inte\Composer XE
2013\bin\)

Now open each xml file using File/Open in the tool that launched when running previous
command. Record the following information from loop profiler and inspection of the code.

16

Record data for only the loops or functions with the largest overall runtimes (the graph is
sorted by self-time, which should correlate to the largest times without resorting).

life
Function Time %Self Loop Min Avg Max
Time entries Iterations Iterations lterations
mCarlo
Function Time %Self Loop Min Avg Max
Time entries Iterations Iterations Iterations
serial
Function Time %Self Loop Min Avg Max
Time entries lterations lterations lterations

Total Runtime:

- Which functions or loops in each program would be good candidates for offloading to a
coprocessor?

o Life:

o MonteCarlo:

o MMul:

Assuming you offloaded the chosen function/loop, how much data would be transferred each
time you offloaded work to the coprocessor?

o Life:

o MonteCarlo:

o MMul:

- Assuming you offloaded the chosen function/loop, would it make sense to keep some data on
the coprocessor between offload calls?

o Life:

17

o MonteCarlo:
o MMul:

- So which of these programs would make sense to run with a portion offloaded?
o Life:

o MonteCarlo:

o MMul:

What we Learned

@ How to gather loop and function information using the —profile-loops compiler option
@® How to view/interpret the output from Loop Profiler
@® How to reason about what code makes sense to offload to the coprocessor

18

