Intel ® MPI on Intel ® Xeon Phi™ - Lab

Instructions

Lab O - Prerequisites
Lab 1 - Bascis
PURE MPI
HYBRID
OFFLOAD
Lab 2 - Hybrid MPI/OpenMP

Lab O - Prerequisites

Assumptions:

e Intel® Manycore Platform Software Stack (Intel® MPSS) Gold is installed
e User accounts exist on the coprocessor
e ssh/scp is available or WinCP tools
e NFS is available
e The compiler is installed in directory
export ICCROOT=/opt/software/intel/composerxe
e Intel MPI is installed in directory
export I MPI ROOT=/opt/software/intel/impi/4.1.1.036
e Intel Trace Analyzer and Collector (ITAC) is installed in directory

export VT _ROOT=/opt/software/intel/itac/8.1.2.033

The path to the Intel MPI reference manual is $I MPI ROOT/doc/Reference Manual.pdf. Use
it for details about the environment variables. It does not yet include specific Intel® Xeon
Phi™ coprocessor details. For coprocessor details, see:

$I _MPI ROOT/doc/Reference Manual/Intel Xeon Phi Coprocessor Support.htm

The trace analyzer reference guide is availabuwle at

$VT ROOT/doc/ITA Reference Guide.pdf. For the collector libraries, see

1

$VT ROOT/doc/doc/Release Notes Addendum for MIC Architecture.txt, currently in Beta

without Intel® Xeon Phi™ coprocessor details.

First check your user environment for the compiler, Intel MPI, and ITAC:
which icc mpiicc traceanalyzer

If one of the tools is not available, setup the appropriate environment for the compiler, Intel
MPI, and ITAC by executing the corresponding source files, and check again:

source $ICCROOT/bin/compilervars.sh intel64
source $I MPI ROOT/intel64/bin/mpivars.sh
source $VT ROOT/intel64/bin/itacvars.sh impi4

which icc mpiicc traceanalyzer

Add the paths in $MIC_LD_LIBRARY_PATH and $VT_ROOT/mic/slib to the
LD_LIBRARY_PATH. Otherwise the OpenMP lib or the ITAC collector lib will not be found in
the hybrid or ITAC labs, respectively.

export MIC LD LIBRARY PATH=/opt/software/intel/composerxe/lib/mic

export LD LIBRARY PATH=$LD LIBRARY PATH:$MIC LD LIBRARY PATH

The Intel MPI run command starts processes on the Intel® Xeon PhiTM coprocessor only when

the environment variable I_MPI_MIC is set. It is required for all labs:

export I MPI MIC=1
export I MPI FABRICS=shm:tcp
The generic host name for the Intel® Xeon Phi™ coprocessor is “hostname -mic0’, or a short

version of it, and can be found in /etc/hosts. Throughout this document the short version

micO is used;

Lab 1 - Bascis

PURE MPI

Each Intel MPI distribution includes a test directory which contains a simple MPI program
coded in C, C++, or Fortran.

Enter directory 1_Basics where you will find a copy of the source file test.c from the Intel MPI
distribution. You will use this code and two variants for your first runs with Intel MPI on the
Intel® Xeon PhiTM coprocessor.

Compile and link the source file with the Intel compiler for the host with the usual Intel MPI

script:
mpiicc -o test test.c

Compile and link the source file for Intel® Xeon Phi™ coprocessor using the "-mmic" compiler
flag. Because of the flag the Intel MPI script will provide the Intel MPI libraries for Intel®

Xeon Phi™ coprocessor to the linker (add the verbose flag "-v" to see it):
mpiicc -mmic -o test.MIC test.c

The ".MIC" suffix is added by the user to distinguish the coprocessor binary from the host

one. It could be any suffix!

You may want to set the communication fabrics for intra and inter node communication
(<intra:inter>) explicitly. In principle this is not required, because Intel® MPI will select the
best available network automatically. However, error messages "ERROR - load_iblibrary" may
be printed out. These are just messages generated by Intel MPI when analyzing the available
interconnects between the host and the Intel® Xeon PhiTM coprocessor without finding

Infiniband (it will fall back to tcp). You can avoid the error messages by setting explicitly:
export I MPI FABRICS=shm:tcp

As a starter run the Xeon binary with 2 MPI processes alone:

mpirun -n 2 ./test

Now run your first Intel MPI program on Intel® Xeon PhiTM coprocessor in coprocessor-only
mode:

mpirun -host micO -n 2 ./test.MIC

An alternative would be to login onto the coprocessor and run the test from there in a

straightforward manner. Try it if you like.

Pulling it together you can run the test code on Intel® Xeon® processor and Intel® Xeon
Phi™ coprocessor as one MPI program in symmetric mode. Each argument set (command

line sections separated by ":") is defined independently; therefore, 4 MPI processes are

chosen on the Intel® Xeon Phi™ coprocessor in this example:

mpirun -host ‘hostname’ -n 2 ./test : -host ‘hostname’-mic0 -n 4 ./test.MIC

Please notice: In the symmetric mode you must provide the "-host" flag for the MPI

processes running on the Xeon host!

As an alternative to the previous command you can declare a machinefile with hosts and
number of processes per hosechot defined. Use this machinefile together with the
environment flag I MPI_MIC_POSTFIX. The value of I_MPI_MIC_POSTFIX is automatically

added to the executable on the Intel® Xeon Phi™ coprocessor:

echo "hostname :2 > machinefile
echo mic0:4 >> machinefile

export I MPI MIC POSTFIX=.MIC

H= W= #=

mpirun -machinefile machinefile -n 6 ./test

NOTE: On this cluster I MPI MIC POSTFIX may not work!

As preparation for the next lab on hybrid programs, the mapping/pinning of Intel MPI
processes will be investigated in the following. Set the environment variable I_MPI_DEBUG
equal or larger than 4 to see the mapping information, either by exporting it:

export I MPI DEBUG=4

mpirunor by adding it as a global environment flag ("-genv") onto the command line close to

mpirun (without "="

mpirun -genv I MPI DEBUG 4 ..

For pure MPI programs (non-hybrid) the environment variable I_MPI_PIN_PROCESSOR_LIST
controls the mapping/pinning. For hybrid codes the variable I_MPI_PIN_DOMAIN takes
precedence. It splits the (logical) processors into non-overlapping domains for which this rule

applies: "1 MPI process for 1 domain".

Repeat the Intel MPI test from before with I_MPI_DEBUG set. Because of the amount of
output the usage of the flag "-prepend-rank" is recommended which puts the MPI rank

number in front of each output line:

mpirun -prepend-rank -n 2 ./test
mpirun -prepend-rank -host “hostname”-micO -n 2 ./test.MIC
mpirun -prepend-rank -host “hostname’ -n 2 ./test : -host “hostname”-mic0 -n 4

./test.MIC

Now set the variable I MPI PIN DOMAIN with the "-env" flag. Possible values are "auto",

"omp" (which relies on the OMP_NUM_THREADS variable), or a fixed number of logical cores.
By exporting I MPI PIN DOMAIN in the shell or using the global "-genv" flag, the variable is

identically exported to the host and the Intel® Xeon Phi™ coprocessor. Typically this is not
beneficial and an architecture adapted setting with "-env" is recommended:

te

mpirun -prepend-rank -env I MPI PIN DOMAIN auto -n 2 ./test

mpirun -prepend-rank -env I MPI PIN DOMAIN auto -host micO -n 2 ./test.MIC

mpirun -prepend-rank -env I MPI PIN DOMAIN 4 -host “hostname’™ -n 2 ./test :

—env I MPI PIN DOMAIN 12 -host ‘hostname’-micO -n 4 ./test.MIC

HYBRID
Now we want to run our first hybrid MPI/OpenMP program on the Intel® Xeon Phi™

coprocessor. A simple printout from the OpenMP threads was added to the Intel MPI test
code:

diff test.c test-openmp.c

Compile and link with the "-openmp" compiler flag. Note: result binary will upload to the

Intel® Xeon Phi™ coprocessor automatically:

mpiicc -openmp -o test-openmp test-openmp.c

mpiicc -openmp -mmic -o test-openmp.MIC test-openmp.c

https://software.intel.com/en-us/articles/mpi-and-process-pinning-on-xeon-phi
https://software.intel.com/en-us/articles/mpi-and-process-pinning-on-xeon-phi
https://software.intel.com/en-us/articles/mpi-and-process-pinning-on-xeon-phi
https://software.intel.com/en-us/articles/mpi-and-process-pinning-on-xeon-phi

Because of the "-openmp" flag, Intel® MPI will link the code with the thread-safe version of
the Intel MPI library (libmpi_mt.so) by default.

Run the Intel MPI tests from before:

unset I MPI DEBUG # to reduce the output for now

export MIC LD LIBRARY PATH=/opt/software/intel/composerxe/lib/mic
mpirun -prepend-rank -n 2 ./test-openmp

mpirun -prepend-rank -host ‘hostname’-micO0 -n 2 -env

LD LIBRARY PATH=$MIC LD LIBRARY PATH ./test-openmp.MIC
mpirun -prepend-rank -host “hostname’™ -n 2 ./test-openmp : -host

‘hostname’-micO0 -n 4 =-env LD LIBRARY PATH=SMIC LD LIBRARY PATH ./test-openmp.MIC

Lot of output! The default for the OpenMP library is to assume as many OpenMP threads as
there are logical processors. For the next tests, explicit OMP_NUM_THREADS values

(different on host and Intel® Xeon Phi™ coprocessor) will be set.

In the following test the default OpenMP affinity is checked. Please notice that the range of
logical processors is always defined by the splitting the threads based on the

I MPI PIN DOMAIN variable. This time we also use I_MPI_P IN_DOMAIN=o0omp, see
how it depends on the OMP_NUM_THREADS setting:

Modifier verbose tells the Intel OpenMP* runtime libraries to print out messages concerning
the supported affinity, including information about the number of packages, humber of cores
in each package, number of thread contexts for each core, and OpenMP* thread bindings to

physical thread contexts.

#mpirun -prepend-rank -env KMP AFFINITY verbose -env OMP _NUM THREADS 8 -env

I MPI PIN DOMAIN auto -n 2 ./test-openmp 2>&1 | sort

#mpirun -prepend-rank -env KMP AFFINITY verbose -—-env OMP NUM THREADS 4 -env

I MPI PIN DOMAIN omp -env LD LIBRARY PATH=$MIC LD LIBRARY PATH -host
‘hostname’ -mic0 -n 2 ./test-openmp.MIC 2>&1 | sort

mpirun -prepend-rank -env KMP AFFINITY verbose -env OMP NUM THREADS 4 -env
I MPI PIN DOMAIN 4 -host ‘hostname’ -n 2 ./test-openmp : -env KMP AFFINITY
verbose -env OMP NUM THREADS 6 —-env I MPI PIN DOMAIN 12 -env

LD LIBRARY PATH=$MIC LD LIBRARY PATH -host ‘hostname’-micO0 -n 4 ./test-openmp.MIC

https://software.intel.com/en-us/articles/mpi-and-process-pinning-on-xeon-phi

Remember that it is usually beneficial to avoid splitting of cores on Intel® Xeon Phi™
coprocessor between MPI processes. Either the number of MPI processes should be chosen so
that I_MPI_PIN_DOMAIN=auto creates domains which cover complete cores or the
environment variable should be a multiply of 4.

Short description of the KMP_AFFINITY and MIC_KMP_AFFINITY

e Set this environment variable to influence thread affinity generally

e OpenMP programs are affected on CPU and MIC (regardless of whether the MIC is
used as an SMP or offload)

export KMP_AFFINITY=<type> (for CPU)

export MIC_KMP_AFFINITY=<type> (for MIC)

Type Effect

compact Pack threads close to each other.

explicit Use the proclist modifier to pin threads.

none Does not pin threads.

scatter Round-robin threads to cores.

?S:\?r;%els) Use scatter, but keep OMP thread ids consecutive.

e Imagine a system with 4 cores and 4 hardware threads/core
e Placement of 8 threads is illustrated for the 3 types

e Compact type does not fully utilize all cores; not recommended

compact

scatter

balanced

Use "scatter", "compact", or "balanced" (Intel® Xeon Phi™ coprocessor specific) to
modify the default OpenMP affinity

https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-8BA55F4A-D5AE-4E27-8C25-058B68D280A4.htm

mpirun -prepend-rank -env KMP AFFINITY verbose,granularity=thread, scatter

—env OMP NUM THREADS 8 -env I MPI DOMAIN auto -n 2 ./test-openmp 2>&l | sort

mpirun -prepend-rank -env KMP AFFINITY verbose,granularity=thread, compact

—env OMP_NUM THREADS 8 -env I MPI DOMAIN auto -n 2 ./test-openmp 2>&1 | sort

mpirun -prepend-rank -env KMP AFFINITY verbose,granularity=thread, compact
-env OMP NUM THREADS 4 -env I MPI PIN DOMAIN omp -env

LD LIBRARY PATH=$MIC LD LIBRARY PATH -host ‘hostname’-mic0 -n 2
./test-openmp.MIC 2>&1

mpirun -prepend-rank -env KMP AFFINITY verbose,granularity=thread, scatter
-env OMP_NUM THREADS 8 -env I MPI PIN DOMAIN 24 -env

LD LIBRARY PATH=$MIC LD LIBRARY PATH -host micO -n 2 ./test-openmp.MIC 2>&1 |
sort

mpirun -prepend-rank -env KMP AFFINITY verbose,granularity=thread,balanced
-env OMP NUM THREADS 8 -env I MPI PIN DOMAIN 24 -env

LD LIBRARY PATH=$MIC LD LIBRARY PATH -host micO0 -n 2 ./test-openmp.MIC 2>&l1 |
sort

mpirun -prepend-rank -env KMP AFFINITY verbose,granularity=thread, compact
-env OMP NUM THREADS 4 -env I MPI PIN DOMAIN 4 -host ‘hostname’ -n 2
./test-openmp : -env KMP AFFINITY verbose,granularity=thread,balanced -env
OMP_NUM THREADS 6 -env I MPI PIN DOMAINS 12 -env

LD LIBRARY PATH=$MIC LD LIBRARY PATH -host ‘hostname’-mic0O -n 4
./test-openmp.MIC 2>&1 | sort

Notice, that as well as other options the OpenMP affinity can be set differently per Intel MPI
argument set, i.e. different on the host and Intel® Xeon PhiTM coprocessor.

OFFLOAD

Now we want to run the Intel MPI test program with some offload code on Intel® Xeon Phi™
coprocessor. The simple printout from the OpenMP thread is now offloaded to Intel® Xeon
Phi™ coprocessor

diff test.c test-offload.c

Compile and link for the Xeon host with the "-openmp" compiler flag as before. The latest
compiler automatically recognizes the offload pragma and creates the binary for it. If
required offloading could be switched off with the "-no-offload" flag:

mpiicc -openmp -o test-offload test-offload.c

Execute the binary on the host:

#export MIC LD LIBRARY PATH=$MIC LD LIBRARY PATH:/opt/intel/mic/myo/lib

OFFLOAD REPORT=2 mpirun -prepend-rank -env KMP AFFINITY

granularity=thread, scatter -env OMP NUM THREADS 4 -env

LD LIBRARY PATH=$MIC LD LIBRARY PATH -n 2 ./test-offload

Repeat the execution, but grep and sort the output to focus on the essential information:

mpirun -prepend-rank -env KMP AFFINITY verbose,granularity=thread,scatter -env

OMP_NUM THREADS 4 -n 2 ./test-offload 2>&l1 | sort

All OpenMP threads will be mapped onto identical Intel® Xeon Phi™ coprocessor threads! The
variable I_MPI_PIN_DOMAIN cannot be used because the domain splitting would be

calculated according to the number of logical processors on the Xeon host!

The solution is to specify explicit proclists per MPI process:

OFFLOAD REPORT=2 mpirun -prepend-rank -env KMP AFFINITY

granularity=thread, proclist=[1-16:4],explicit -env OMP NUM THREADS 4 -n 1
./test-offload : -env KMP AFFINITY granularity=thread,proclist=[17-32:4],explicit

—env OMP NUM THREADS 4 -n 1 ./test-offload

Repeat the execution, but grep and sort the output to focus on the essential information:

https://software.intel.com/en-us/node/510196

mpirun -prepend-rank -env KMP AFFINITY

verbose, granularity=thread, proclist=[1-16:4],explicit -env OMP_NUM THREADS 4 -n 1
./test-offload : -env KMP AFFINITY

verbose, granularity=thread, proclist=[17-32:4],explicit -env OMP_NUM THREADS 4 -n

1 ./test-offload 2>&1 |sort

Lab 2 - Hybrid MPI/OpenMP

Enter the directory 2_MPI_OpenMP.
Execute the following commands to build the Poisson binaries for the Intel® Xeon® host and
the Intel® Xeon Phi™ coprocessor. The compilation will use the "-openmp" flag to create the

hybrid version of the code. The OpenMP threads are used in the file compute.c:

make clean; make

make clean; make MIC

Execute the Poisson application on the host, the Intel® Xeon Phi™ coprocessor and in

symmetric mode on both. The code accepts the following flags:

"-n x" change size of grid. The default is x=1000.

"-iter x" change number of max iterations. The default is x= 4000.

"-prows x" change number of processor rows. The default is computed.

mpirun -env OMP NUM THREADS 12 -n 1 ./poisson -n 3500 -iter 10

mpirun -env OMP NUM THREADS 12 -env LD LIBRARY PATH=$MIC LD LIBRARY PATH -host

micO -n 1 ./poisson.MIC -n 3500 -iter 10

mpirun -env OMP NUM THREADS 12 -host “hostname’™ -n 1 ./poisson -n 3500 -iter 10
-env OMP_NUM THREADS 12 -env LD LIBRARY PATH=$MIC LD LIBRARY PATH -host micO -n

1 ./poisson.MIC -n 3500 -iter 10
Vary the number of MPI processes and OpenMP threads (most likely different on the host and

coprocessor) to optimize the performance. Use the knowledge about MPI process mapping

and OpenMP thread affinity from the basic lab.

10

