
INTRODUCTION TO

OPTIMIZING COMPILATION

AND THE INTEL COMPILER

Andrey Bokhanko

Intel

About me

 Andrey Bokhanko

 Manager and technical lead for several Intel

Compiler teams

 Started to work on optimizing compilers back

in 1999

 Before that, worked in Elbrus, in the compiler

team

 PhD thesis on… you guessed it – compilers

(register allocation)

Scope of this lecture

 Introduction to optimizing compilation

 “Optimizing compilation” – what it is? What is it
about?

 Mostly not on compilers themselves

 What value Intel Compiler adds?

 Not an introduction to compiler construction –
1 hour is definitely not enough for this

 A view from industrial perspective

 Sorry, I’m not very knowledgeable in state of
things in academia

What is a compiler?

 “…is a computer program that transforms

source code … into another computer

language (object code)” (wikipedia)

 An essential tool – you can’t write computer

programs without it

 An “invisible” tool

 Speed of compilation and stability is essential

What is an optimizing compiler?

 Does everything that a non-optimizing
compiler should do

 Also, tries to optimize a compiled program,
while leaving its semantic intact

 Not as easy as it might seem

 Frankly, is an optional, not essential tool

 Might bring valuable competitive advantage to

 Software developer

 OS vendor

 Hardware vendor

What “optimize” means?

 Make user program faster, smaller, consume less

power

 “Traditional” optimizing compilers concentrate on

“faster” part

 “Smaller” is important only for embedded systems

 Power-efficiency is extremely important in mobile

systems. However, tools are in their infancy

 Compilation for GP uses distinct approaches; there is

a trend for them to become more general

 Preserving semantic of a user program is a must

Who creates optimizing compilers?

 This is a complex and expensive task

 Usually, two types of vendors pay for this work

 Hardware vendors

 They want user programs to run fast on their hardware

 OS vendors

 They want user programs to run fast on their OSes

Benchmarking

 How to measure if a compiler speed-ups user

programs?

 Easy for a single program, single input, single

system

 Not so easy for multiple programs, compilers,

OSes, machines

 We want to simulate and measure what users

typically do on a system

Benchmarking, cont

 Should be done on a set of programs /

workloads

 Representing what customers are most likely going to

run on a system

 Should be reproducible

 Overall performance is a combination of

 Machine

 OS (including libraries)

 Compiler

Standard benchmarks

 SPEC: Standard Performance Evaluation Corporation
 Many benchmarks; most important is SPEC CPU

 www.spec.org

 TPC: Transaction Processing Performance Council
 Performance of transaction processing systems

(databases)

 www.tpc.org

 EEMBC: Embedded Microprocessor Benchmark Consortium

 Benchmarks for embedded/mobile systems

 Allow some degree of source code modification

 www.eembc.org

 Kernels, toy programs, synthetic benchmarks (Dhrystone,
Whetstone) and MIPS numbers were popular, not anymore

http://www.spec.org/
http://www.tpc.org/
http://www.eembc.org/

Standard benchmarks, cont

SPEC CPU

 Probably the most important benchmark for general-
purpose computing

 Though biased towards technical and scientific computing

 First version is SPEC CPU92

 Current version is SPEC CPU2006

 SPECv6 is “almost ready”

 Aims to be vendor- and platform- neutral

 All major players are members, try to influence SPEC
development

 Seriously impacts ASP, especially for server machines

 Makes or breaks careers

What’s inside SPEC CPU2006

 CINT2006
 400.perlbench (C, programming language)

 401.bzip2 (C, compression)

 403.gcc (C, C compiler)

 429.mcf (C, combinatorial optimizations)

 445.gobmk (C, artificial intelligence: go)

 456.hmmer (C, search gene sequence)

 458.sjeng (C, artificial intelligence: chess)

 462.libquantum (C, physics / quantum computing)

 464.h264ref (C, video compression)

 471.omnetpp (C++, discret event simulation)

 473.astar (C++, path-finding algorithms)

 483.xalancbmk (C++, XML processing)

What’s inside SPEC CPU2006,

cont
 CFP2006

 410.bwaves (Fortran, fluid dynamics)

 416.gamess (Fortran, quantum chemistry)

 433.milc (C, physics / quantum chromodynamics)

 434.zeuscmp (Fortran, physics / CFD)

 435.gromacs (C / Fortran, biochemistry)

 436.cactusADM (C / Fortran, physics)

 437.leslie3d (Fortran, fluid dynamics)

 444.namd (C++, biology)

 447.dealI (C++, finite element analysis)

 450.soplex (C++, linear programming, optimization)

 453.povray (C++, image ray-tracing)

 454.calculix (C / Fortran, structural mechanics)

 459.GemsFDTD (Fortran, computational electronmagnetics)

 465.tonto (Fortran, quantum chemistry)

 470.lbm (C, fluid dynamics)

 481.wrf (C / Fortran, weather)

 482.sphinx3 (C, speech recognition)

SPEC CPU, cont

 How to measure results?

 Should we just summarize execution time of all

tasks?

 In reality, execution time got normalized to a

reference time (obtained on some old

machine)

SPEC CPU, cont

 There are two kinds of scores:

 speed: single copy of each task

 rate: multiple copies of each task (usually equal to

the number of cores)

 Also, two kinds of measurements:

 base: same options for all tasks

 peak: different options allowed for different asks

 Total score = geomean of all individual scores

 Reported separately for CINT and CFP

SPEC CPU, cont

SPEC CPU, cont

How to optimize?

 Basically, two ways:

 Eliminate redundant / slow computations

 Classic optimizations

 Keep execution resources busy

 Especially important for statically-scheduled

machines

 Sometimes, these two goals conflict with each

other

Elimination of redundant / slow

computations

 Most classic optimizations

 Dead code elimination

 Common subexpression elimination

 Constant folding

 Strength reduction

 …

 Generally, help everywhere, so implemented

everywhere

 Known for very, very long time

Dead code elimination

int foo(int x, int y) {

int z = x / y;

return x * y;

}

int foo(int x, int y) {

return x * y;

}

Common subexpression

elimination

int foo(int x, int y) {

int z1 = x * y + 1;

int z2 = x * y + 2;

return z1 + z2;

}

int foo(int x, int y) {

int t = x * y;

int z1 = t + 1;

int z2 = t + 2;

return z1 + z2;

}

CSE + constant folding + DCE

int foo(int x, int y) {

int z1 = x * y + 1;

int z2 = x * y + 2;

return z1 + z2;

}

int foo(int x, int y) {

int t = x * y;

return t + t + 3;

}

Strength reduction

int foo(char *A) {

for (int i = 0; i < 100; i++) {

*((int *)(A + i * 4)) = 0;

}

}

int foo(char *A) {

char *t = A + i;

for (int i = 0; i < 100; i++) {

*((int *)t) = 0;

t += 4;

}

}

Peephole

int foo(int x) {

return x * 2;

}

int foo(int x) {

return x << 1;

}

Keeping execution resources busy

 When execution resources may lay unused?

 Parallel machine with only some of available

execution resources used

 Waiting for a dependency

 Especially memory dependency!

 Advanced, aggressive, speculative scheduling

 Memory optimizations

 Often implemented in hardware, especially in

OOO machines

Advanced, aggressive, speculative

scheduling

 Scheduling is reordering of instructions in

order to keep execution units busy all the time

 Advanced = using advanced techniques, like

copying of instructions

 Aggressive = global in scope

 Speculative = executing instructions that might

not be executed

Control speculation

int foo(int *x) {

if (x != 0) {

return *x;

}

return 0;

}

int foo(int *x) {

int t = *x;

if (x != 0) {

return t;

}

return 0;

}

Data speculation

int foo(int *x, int *y) {

if (x != 0) {

*y = 0;

return *x;

}

return 0;

}

int foo(int *x, int *y) {

int t = *x;

if (x != 0) {

*y = 0;

return t;

}

return 0;

}

Unrolling

int foo(char *A) {

char *t = A + i;

for (int i = 0; i < 100; i++) {

*((int *)t) = 0;

t += 4;

}

}

int foo(char *A) {

char *t1 = A + i;

char *t2 = A + i + 4;

for (int i = 0; i < 50; i++) {

*((int *)t1) = 0;

t1 += 8;

*((int *)t2) = 0;

t2 += 8;

}

}

Prefetching

int foo(int *A) {

int x = 0;

for (int i = 0; i < 100; i++) {

x += A[i];

}

return x;

}

int foo(int *A) {

int x = 0;

for (int i = 0; i < 100; i++) {

x += A[i];

prefetch A[i + 4];

}

return x;

}

Profiling

 It is important to know where and how to

optimize

 Instrumentation of user program, then “profile

collection” run

 Several deficiencies

 Transforms compilation into two-step process

 How to choose input for profile collection run?

What if it is not representable?

Inter-procedural (aka link-time)

optimizations

 Optimizations across function (and translation

unit) boundaries

 Inlining

 Function cloning

 Interprocedural constant propagation

 …

 Individual files compiled as usual

 Final linking step does all the optimizations

 …and usually takes a lot of time!

Vectorization

 Practically all modern processors support

SIMD instructions

 Single Instruction Multiple Data

for (i=0;i<=MAX;i++)

c[i]=a[i]+b[i];

+
a[i]

b[i]

a[i]+b[i]

+

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]a

b

a+b

+

64 128
256

512

MMX SSE AVX AVX-512

Vector width
evolution

SIMD: how to use

…

float *a, *b, *c;

...

#pragma omp simd

for(int i…)

c[i] = a[i] + b[i];

$> icc –fast –openmp …

E
x
p
lic

it
M

a
n
u
a

l

…

float *a, *b, *c;

...

for(int i…)

c[i] = a[i] + b[i];

$> icc -fast …

A
u
to

• High and transparent portability

• High and transparent scalability

• No development cost

• Unpredictable performance

• Max performance

• Low portability

• High development cost

• Low scalability

• Enforces vectorization performance

• High and transparent portability

• High and transparent scalability

• Low development cost
• Predictable performance

#include "xmmintrin.h“

…

float *a, *b, *c;

__m128 ma, mc, mc;

...

for(int i…)

{

ma = _mm_load_ps(a + i*4);

mb = _mm_load_ps(b + i*4);

mc = _mm_add_ps(ma, mb);

_mm_store_ps(c+i * 4, mc);

}

$> icc …

• Most modern processors have multiple cores

• If you don’t employ parallelization, all but one

core are lost

• Different OS-specific standards: pthreads,

Windows threads, Apple blocks

• OpenMP is a platform- and

vendor- neutral standard
• You had a separate lecture on it

Parallelization

U
S

E
D

NOT USED

What value Intel Compiler adds?

 Focused on delivering maximum performance on

IA

 Powerful loop, profile-based and IPO optimizations

 Beats other compilers

 Used by practically everyone to publish SPEC scores

on IA

 Intel compiler developers collaborate with Intel

HW engineers to implement optimizations

 Supports latest IA instructions

 Usually much sooner than other compilers

What value Intel Compiler adds?,

cont

 Supports latest parallel programming

standards

 OpenMP 4.0

 CilkPlus

 Broad support for vectorization on IA

 From manual to automatic, with #pragma omp

simd in between

 Latest SIMD extensions

What to read

 Bacon at al, “Compiler
Transformations for high-
performance computing”, ACM
Computing Surveys, Dec 1994

 Steven Muchnick, “Advanced
Compiler Design and
Implementation”, Morgan
Kaufmann, 1997

 Schouten at al, “Inside the Intel
Compiler”, Linux Journal, Feb
2003

 PLDI, CGO conferences

Thank you for your time!

Questions?
 andreybokhanko@gmail.com

