
INTRODUCTION TO

OPTIMIZING COMPILATION

AND THE INTEL COMPILER

Andrey Bokhanko

Intel

About me

 Andrey Bokhanko

 Manager and technical lead for several Intel

Compiler teams

 Started to work on optimizing compilers back

in 1999

 Before that, worked in Elbrus, in the compiler

team

 PhD thesis on… you guessed it – compilers

(register allocation)

Scope of this lecture

 Introduction to optimizing compilation

 “Optimizing compilation” – what it is? What is it
about?

 Mostly not on compilers themselves

 What value Intel Compiler adds?

 Not an introduction to compiler construction –
1 hour is definitely not enough for this

 A view from industrial perspective

 Sorry, I’m not very knowledgeable in state of
things in academia

What is a compiler?

 “…is a computer program that transforms

source code … into another computer

language (object code)” (wikipedia)

 An essential tool – you can’t write computer

programs without it

 An “invisible” tool

 Speed of compilation and stability is essential

What is an optimizing compiler?

 Does everything that a non-optimizing
compiler should do

 Also, tries to optimize a compiled program,
while leaving its semantic intact

 Not as easy as it might seem

 Frankly, is an optional, not essential tool

 Might bring valuable competitive advantage to

 Software developer

 OS vendor

 Hardware vendor

What “optimize” means?

 Make user program faster, smaller, consume less

power

 “Traditional” optimizing compilers concentrate on

“faster” part

 “Smaller” is important only for embedded systems

 Power-efficiency is extremely important in mobile

systems. However, tools are in their infancy

 Compilation for GP uses distinct approaches; there is

a trend for them to become more general

 Preserving semantic of a user program is a must

Who creates optimizing compilers?

 This is a complex and expensive task

 Usually, two types of vendors pay for this work

 Hardware vendors

 They want user programs to run fast on their hardware

 OS vendors

 They want user programs to run fast on their OSes

Benchmarking

 How to measure if a compiler speed-ups user

programs?

 Easy for a single program, single input, single

system

 Not so easy for multiple programs, compilers,

OSes, machines

 We want to simulate and measure what users

typically do on a system

Benchmarking, cont

 Should be done on a set of programs /

workloads

 Representing what customers are most likely going to

run on a system

 Should be reproducible

 Overall performance is a combination of

 Machine

 OS (including libraries)

 Compiler

Standard benchmarks

 SPEC: Standard Performance Evaluation Corporation
 Many benchmarks; most important is SPEC CPU

 www.spec.org

 TPC: Transaction Processing Performance Council
 Performance of transaction processing systems

(databases)

 www.tpc.org

 EEMBC: Embedded Microprocessor Benchmark Consortium

 Benchmarks for embedded/mobile systems

 Allow some degree of source code modification

 www.eembc.org

 Kernels, toy programs, synthetic benchmarks (Dhrystone,
Whetstone) and MIPS numbers were popular, not anymore

http://www.spec.org/
http://www.tpc.org/
http://www.eembc.org/

Standard benchmarks, cont

SPEC CPU

 Probably the most important benchmark for general-
purpose computing

 Though biased towards technical and scientific computing

 First version is SPEC CPU92

 Current version is SPEC CPU2006

 SPECv6 is “almost ready”

 Aims to be vendor- and platform- neutral

 All major players are members, try to influence SPEC
development

 Seriously impacts ASP, especially for server machines

 Makes or breaks careers

What’s inside SPEC CPU2006

 CINT2006
 400.perlbench (C, programming language)

 401.bzip2 (C, compression)

 403.gcc (C, C compiler)

 429.mcf (C, combinatorial optimizations)

 445.gobmk (C, artificial intelligence: go)

 456.hmmer (C, search gene sequence)

 458.sjeng (C, artificial intelligence: chess)

 462.libquantum (C, physics / quantum computing)

 464.h264ref (C, video compression)

 471.omnetpp (C++, discret event simulation)

 473.astar (C++, path-finding algorithms)

 483.xalancbmk (C++, XML processing)

What’s inside SPEC CPU2006,

cont
 CFP2006

 410.bwaves (Fortran, fluid dynamics)

 416.gamess (Fortran, quantum chemistry)

 433.milc (C, physics / quantum chromodynamics)

 434.zeuscmp (Fortran, physics / CFD)

 435.gromacs (C / Fortran, biochemistry)

 436.cactusADM (C / Fortran, physics)

 437.leslie3d (Fortran, fluid dynamics)

 444.namd (C++, biology)

 447.dealI (C++, finite element analysis)

 450.soplex (C++, linear programming, optimization)

 453.povray (C++, image ray-tracing)

 454.calculix (C / Fortran, structural mechanics)

 459.GemsFDTD (Fortran, computational electronmagnetics)

 465.tonto (Fortran, quantum chemistry)

 470.lbm (C, fluid dynamics)

 481.wrf (C / Fortran, weather)

 482.sphinx3 (C, speech recognition)

SPEC CPU, cont

 How to measure results?

 Should we just summarize execution time of all

tasks?

 In reality, execution time got normalized to a

reference time (obtained on some old

machine)

SPEC CPU, cont

 There are two kinds of scores:

 speed: single copy of each task

 rate: multiple copies of each task (usually equal to

the number of cores)

 Also, two kinds of measurements:

 base: same options for all tasks

 peak: different options allowed for different asks

 Total score = geomean of all individual scores

 Reported separately for CINT and CFP

SPEC CPU, cont

SPEC CPU, cont

How to optimize?

 Basically, two ways:

 Eliminate redundant / slow computations

 Classic optimizations

 Keep execution resources busy

 Especially important for statically-scheduled

machines

 Sometimes, these two goals conflict with each

other

Elimination of redundant / slow

computations

 Most classic optimizations

 Dead code elimination

 Common subexpression elimination

 Constant folding

 Strength reduction

 …

 Generally, help everywhere, so implemented

everywhere

 Known for very, very long time

Dead code elimination

int foo(int x, int y) {

int z = x / y;

return x * y;

}

int foo(int x, int y) {

return x * y;

}

Common subexpression

elimination

int foo(int x, int y) {

int z1 = x * y + 1;

int z2 = x * y + 2;

return z1 + z2;

}

int foo(int x, int y) {

int t = x * y;

int z1 = t + 1;

int z2 = t + 2;

return z1 + z2;

}

CSE + constant folding + DCE

int foo(int x, int y) {

int z1 = x * y + 1;

int z2 = x * y + 2;

return z1 + z2;

}

int foo(int x, int y) {

int t = x * y;

return t + t + 3;

}

Strength reduction

int foo(char *A) {

for (int i = 0; i < 100; i++) {

*((int *)(A + i * 4)) = 0;

}

}

int foo(char *A) {

char *t = A + i;

for (int i = 0; i < 100; i++) {

*((int *)t) = 0;

t += 4;

}

}

Peephole

int foo(int x) {

return x * 2;

}

int foo(int x) {

return x << 1;

}

Keeping execution resources busy

 When execution resources may lay unused?

 Parallel machine with only some of available

execution resources used

 Waiting for a dependency

 Especially memory dependency!

 Advanced, aggressive, speculative scheduling

 Memory optimizations

 Often implemented in hardware, especially in

OOO machines

Advanced, aggressive, speculative

scheduling

 Scheduling is reordering of instructions in

order to keep execution units busy all the time

 Advanced = using advanced techniques, like

copying of instructions

 Aggressive = global in scope

 Speculative = executing instructions that might

not be executed

Control speculation

int foo(int *x) {

if (x != 0) {

return *x;

}

return 0;

}

int foo(int *x) {

int t = *x;

if (x != 0) {

return t;

}

return 0;

}

Data speculation

int foo(int *x, int *y) {

if (x != 0) {

*y = 0;

return *x;

}

return 0;

}

int foo(int *x, int *y) {

int t = *x;

if (x != 0) {

*y = 0;

return t;

}

return 0;

}

Unrolling

int foo(char *A) {

char *t = A + i;

for (int i = 0; i < 100; i++) {

*((int *)t) = 0;

t += 4;

}

}

int foo(char *A) {

char *t1 = A + i;

char *t2 = A + i + 4;

for (int i = 0; i < 50; i++) {

*((int *)t1) = 0;

t1 += 8;

*((int *)t2) = 0;

t2 += 8;

}

}

Prefetching

int foo(int *A) {

int x = 0;

for (int i = 0; i < 100; i++) {

x += A[i];

}

return x;

}

int foo(int *A) {

int x = 0;

for (int i = 0; i < 100; i++) {

x += A[i];

prefetch A[i + 4];

}

return x;

}

Profiling

 It is important to know where and how to

optimize

 Instrumentation of user program, then “profile

collection” run

 Several deficiencies

 Transforms compilation into two-step process

 How to choose input for profile collection run?

What if it is not representable?

Inter-procedural (aka link-time)

optimizations

 Optimizations across function (and translation

unit) boundaries

 Inlining

 Function cloning

 Interprocedural constant propagation

 …

 Individual files compiled as usual

 Final linking step does all the optimizations

 …and usually takes a lot of time!

Vectorization

 Practically all modern processors support

SIMD instructions

 Single Instruction Multiple Data

for (i=0;i<=MAX;i++)

c[i]=a[i]+b[i];

+
a[i]

b[i]

a[i]+b[i]

+

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]a

b

a+b

+

64 128
256

512

MMX SSE AVX AVX-512

Vector width
evolution

SIMD: how to use

…

float *a, *b, *c;

...

#pragma omp simd

for(int i…)

c[i] = a[i] + b[i];

$> icc –fast –openmp …

E
x
p
lic

it
M

a
n
u
a

l

…

float *a, *b, *c;

...

for(int i…)

c[i] = a[i] + b[i];

$> icc -fast …

A
u
to

• High and transparent portability

• High and transparent scalability

• No development cost

• Unpredictable performance

• Max performance

• Low portability

• High development cost

• Low scalability

• Enforces vectorization performance

• High and transparent portability

• High and transparent scalability

• Low development cost
• Predictable performance

#include "xmmintrin.h“

…

float *a, *b, *c;

__m128 ma, mc, mc;

...

for(int i…)

{

ma = _mm_load_ps(a + i*4);

mb = _mm_load_ps(b + i*4);

mc = _mm_add_ps(ma, mb);

_mm_store_ps(c+i * 4, mc);

}

$> icc …

• Most modern processors have multiple cores

• If you don’t employ parallelization, all but one

core are lost

• Different OS-specific standards: pthreads,

Windows threads, Apple blocks

• OpenMP is a platform- and

vendor- neutral standard
• You had a separate lecture on it

Parallelization

U
S

E
D

NOT USED

What value Intel Compiler adds?

 Focused on delivering maximum performance on

IA

 Powerful loop, profile-based and IPO optimizations

 Beats other compilers

 Used by practically everyone to publish SPEC scores

on IA

 Intel compiler developers collaborate with Intel

HW engineers to implement optimizations

 Supports latest IA instructions

 Usually much sooner than other compilers

What value Intel Compiler adds?,

cont

 Supports latest parallel programming

standards

 OpenMP 4.0

 CilkPlus

 Broad support for vectorization on IA

 From manual to automatic, with #pragma omp

simd in between

 Latest SIMD extensions

What to read

 Bacon at al, “Compiler
Transformations for high-
performance computing”, ACM
Computing Surveys, Dec 1994

 Steven Muchnick, “Advanced
Compiler Design and
Implementation”, Morgan
Kaufmann, 1997

 Schouten at al, “Inside the Intel
Compiler”, Linux Journal, Feb
2003

 PLDI, CGO conferences

Thank you for your time!

Questions?
 andreybokhanko@gmail.com

