INTRODUCTION TO
OPTIMIZING COMPILATION
AND THE INTEL COMPILER

About me

Andrey Bokhanko

Manager and technical lead for several Intel
Compiler teams

Started to work on optimizing compilers back
In 1999

Before that, worked in Elbrus, in the compiler
team

PhD thesis on... you guessed it — compilers
(register allocation)

Scope of this lecture

Introduction to optimizing compilation
“Optimizing compilation” — what it is? What Is it
about?

Mostly not on compilers themselves

What value Intel Compiler adds?

Not an introduction to compiler construction —
1 hour is definitely not enough for this
A view from industrial perspective

Sorry, I'm not very knowledgeable in state of
things in academia

What is a compiler?

“...Is a computer program that transforms
source code ... into another computer
language (object code)” (wikipedia)

An essential tool — you can’t write computer
programs without it

An “invisible” tool
Speed of compilation and stability is essential

What Is an optimizing compiler?

Does everything that a non-optimizing
compiler should do

Also, tries to optimize a compiled program,
while leaving its semantic intact

Not as easy as it might seem
Frankly, is an optional, not essential tool
Might bring valuable competitive advantage to

Software developer
OS vendor
Hardware vendor

What “optimize” means?

Make user program faster, smaller, consume less
power

“Traditional” optimizing compilers concentrate on
“faster” part

“Smaller” is important only for embedded systems

Power-efficiency is extremely important in mobile
systems. However, tools are in their infancy

Compilation for GP uses distinct approaches; there is
a trend for them to become more general

Preserving semantic of a user program is a must

Who creates optimizing compilers?

This Is a complex and expensive task

Usually, two types of vendors pay for this work
Hardware vendors
They want user programs to run fast on their hardware

OS vendors
They want user programs to run fast on their OSes

Benchmarking

How to measure if a compiler speed-ups user
programs?
Easy for a single program, single input, single
system
Not so easy for multiple programs, compilers,
OSes, machines
We want to simulate and measure what users
typically do on a system

Benchmarking, cont

Should be done on a set of programs /
workloads

Representing what customers are most likely going to
run on a system

Should be reproducible

Overall performance Is a combination of
Machine
OS (including libraries)
Compiler

Standard benchmarks

SPEC: Standard Performance Evaluation Corporation
Many benchmarks; most important is SPEC CPU

TPC: Transaction Processing Performance Councill

Performance of transaction processing systems
(databases)

EEMBC: Embedded Microprocessor Benchmark Consortium
Benchmarks for embedded/mobile systems
Allow some degree of source code modification

Kernels, toy programs, synthetic benchmarks (Dhrystone,
Whetstone) and MIPS numbers were popular, not anymore

http://www.spec.org/
http://www.tpc.org/
http://www.eembc.org/

Standard benchmarks, cont
]

| Oracle SPARC Enterprise M-Series Servers Benchmark Results

SPARC Enterprise M9000 SPARC Enterprise M§000 SPARC Enterprise M4000

ASPARC Enterprise M9000 Server Benchmarks

* Oracle Database 119 and SPARC Enterprise M3000 Server Double Previous Data
Warehousing World Recard (March 22, 2011)

% IBEM posts SPEC CPU2006 scores for x3850 X5

SPE! x3850 Xb& delivers competitive four-processor performance for compute-intensive applications

April 6, 2010 __IBM® has nublished SPECE CPU2006 henchmark scores for the 1BM Svstem x® 3850

X5 server fea Sg I accelerating results™ [5earch [
4800 Series |

About Us

Products Solutions Partners Services w ol dwide
A Trusted Leader in Technical Computing Ready to buy? Contact Sales

+ Newsroom

Press Release

Frezz Relaaze
Archive

SGI® Sets World Records On Standard Performance Evaluation Corporation (SPEGC)

Contacts
RSE Feeds B PERFORMAMCE BRIEF Eﬁ]

SGI

HP Integrity Superdome Server powered by dual-core
Intel ® ltanium® 2 delivers leadership SPECint_rate2006

performance with HP-UX 11i v2

The NEW HP Combined with the processorenhancing capabilities of HP's Super-Scalable
Integrity Superdome Processor Chipset 522000, the HP Infegrity Superdome Server delivers

mutstandina radarmancs sealakilibe and simelified mancoameant ot on

SPEC CPU

spec

Probably the most important benchmark for general-
purpose computing

Though biased towards technical and scientific computing
First version is SPEC CPU92
Current version is SPEC CPU2006
SPECV6 is “almost ready”

Aims to be vendor- and platform- neutral

All major players are members, try to influence SPEC
development

Seriously impacts ASP, especially for server machines
Makes or breaks careers

What's inside SPEC CPU2006

CINT2006
400.perlbench (C, programming language)
401.bzip2 (C, compression)
403.gcc (C, C compiler)
429.mcf (C, combinatorial optimizations)
445.gobmk (C, artificial intelligence: go)
456.hmmer (C, search gene sequence)
458.sjeng (C, artificial intelligence: chess)
462.libquantum (C, physics / guantum computing)
464.n264ref (C, video compression)
471.omnetpp (C++, discret event simulation)
473.astar (C++, path-finding algorithms)
483.xalancbmk (C++, XML processing)

What's inside SPEC CPU2006,
cont

CFP2006
410.bwaves (Fortran, fluid dynamics)
416.gamess (Fortran, quantum chemistry)
433.milc (C, physics / quantum chromodynamics)
434.zeuscmp (Fortran, physics / CFD)
435.gromacs (C / Fortran, biochemistry)
436.cactusADM (C / Fortran, physics)
437 .leslie3d (Fortran, fluid dynamics)
444 .namd (C++, biology)
447 .deall (C++, finite element analysis)
450.soplex (C++, linear programming, optimization)
453.povray (C++, image ray-tracing)
454 calculix (C / Fortran, structural mechanics)
459.GemsFDTD (Fortran, computational electronmagnetics)
465.tonto (Fortran, quantum chemistry)
470.Iom (C, fluid dynamics)
481.wrf (C / Fortran, weather)
482.sphinx3 (C, speech recognition)

SPEC CPU, cont

How to measure results?

Should we just summarize execution time of all
tasks?

In reality, execution time got normalized to a
reference time (obtained on some old
machine)

SPEC CPU, cont

There are two kinds of scores:
speed: single copy of each task

rate: multiple copies of each task (usually equal to
the number of cores)

Also, two kinds of measurements:
base: same options for all tasks
peak: different options allowed for different asks

Total score = geomean of all individual scores
Reported separately for CINT and CFP

SPEC CPU, cont

Hewlett-Packard Company SPECint®2006 = 15.7

HP Integrity 1x6600 (1.6GHz/24MB Dual-Core Intel | <prcint base2006 = 14.5
Itanium 2) T

CPU2006 license: 03 Test date: Aug-2006
Test sponsor: Hewlett-Packard Company Hardware Availability: ~ Sep-2006
Tested by: Hewlett-Packard Compaty Software Awvailability: Sep-2008
0 Z.00 4.00 6.00 B.00 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0 44.0
RN R R R N R N Y S R RN RN R R R R RN
| 11.3 H
488 per lbench | K !
: 9.48
| 9.9
481 ,bzip2 | 4
! 5.70
| 12.2
483.gcc | .
: 11.2
| 20.6
429 ncf | .
! 19.4
| 14.4
445, gobnk | !
! 11.4
| 7.2
456 . hnner | o
: 26.3
| 11.3
4958, 5 jeng | .
! 9.62
| 43.5
462, libquantun o
: 43.2
| H 21.2
434.h234ref| : |
| .73 i
471, onnetpp !
8.00
| 14.9
473, astar |
! 14.5| 1
| 5.3
483, #alancbhnk |] :
! 13.3

SPECint_base?086 = 14,5
SPECint2806 = 15,7

SPEC CPU, cont

Hardware
CPU Name: Dal-Core Intel Ttarmum 2 050 Operating
CPU Characteristics: 1.6GHz24ME, 5331Hz FSB System:
CTU MHz: 1600 Compiler:
FPU: Integrated
CPU(s) enabled: 2 cores, 1 chip, 2 coresichip Auto Parallel:
CPU(s) orderable: 1-4 chips File System:
Primary Cache: 16 EB I+ 16 EB D on chip per core System State:
Secondary Cache: 1ME I+ 256 EB D on chip per core Base Pointers:
L3 Cache: 12 MB I+D on chip per core Peak Pointers:
Other Cache: Mone Other Software:
Memory: 24 GE (24=1GE DIMg)
Disk Subsystem: FEGE 10K EPM SAS
Other Hardware: Hone

Software

HFUX111-TCOE B.11.23.0609

HE CfaC+ Developer's Bundle
2.11.23.12

Mo

wats

Llulti-user

22-bat

22-bit

WhcroCuill Smattheap &.0

How to optimize?

Basically, two ways:
Eliminate redundant / slow computations
Classic optimizations

Keep execution resources busy

Especially important for statically-scheduled
machines

Sometimes, these two goals conflict with each
other

Elimination of redundant / slow
computations

Most classic optimizations
Dead code elimination
Common subexpression elimination

Constant folding
Strength reduction

Generally, help everywhere, so implemented
everywhere

Known for very, very long time

Dead code elimination
1

int foo(int x, int y) {
int z =x/ y;
return x * y;

int foo(int x, int y) {
return x * y;

} }

Common subexpression
elimination

int foo(int x, int y) {
int £t = x * y;
int z1 =t + 1;
int z2 = t + 2;
return zl + z2;

int foo(int x, int y) {
int z1 = x * y + 1;
int z2 = x * y + 2;

return z1 + z2;

CSE + constant folding + DCE

int foo(int x, int y) {

int z1 = x * v + 1; int foo(int x, int y) {

int t = x * y;

int z2 = x * y + 2;
return t + t + 3;

return zl1l + z2;

Strength reduction
_

int foo(char *A) {

int foo(char *A) { char *t = A + 1i;
for (int i = 0; i < 100; i++) { for (int i = 0; 1
*((int *) (A + i * 4)) = 0; *((int *)t) = 0;

< 100; i++) {

} t += 4;
} }
}

Peephole

int foo(int x) {

return x * 2; int foo(int x) {

} return x << 1;

}

Keeping execution resources busy

When execution resources may lay unused?

Parallel machine with only some of available
execution resources used

Waiting for a dependency
Especially memory dependency!

Advanced, aggressive, speculative scheduling
Memory optimizations

Often implemented in hardware, especially in
OOO machines

Advanced, aggressive, speculative
scheduling

Scheduling Is reordering of instructions in
order to keep execution units busy all the time

Advanced = using advanced techniques, like
copying of instructions

Aggressive = global in scope

Speculative = executing instructions that might
not be executed

Control speculation
_

int foo(int *x) ({ int foo(int *x) {
if (x '= 0) { int t = *x;

return *x; if (x '= 0) {

} return t;

}

return O;
return 0;

Data speculation

int foo(int *x, int *y) { int foo(int *x, int *y) {
if (x !'= 0) { int t = *x;
xy = 0;
return *x;

} return t;

}

return O;
return 0;

Unrolling

int foo(char *A) {
char *t = A + i;

0; i

= 0;

for (int i =
*((int *)t)
t += 4;

< 100;

int foo(char *A) {

char *tl = A + i;

char *t2 = A + i + 4;

for (int i = 0; i < 50; i++)
*((int *)tl) = O;
tl += 8;
*((int *)t2) = 0;
t2 += 8;

i++) {

Prefetching

int foo(int *A) {
int x = 0;
for (int i = 0; i < 100; i++) {
x += A[i];
prefetch A[i + 4];

int foo(int *A) {
int x = 0;
for (int i = 0; i < 100; i++) {
x += A[i];

b }

return x; return x:
r

Profiling

It iIs Important to know where and how to
optimize

Instrumentation of user program, then “profile
collection” run

Several deficiencies
Transforms compilation into two-step process

How to choose input for profile collection run?
What if it iIs not representable?

Inter-procedural (aka link-time)
optimizations

Optimizations across function (and translation
unit) boundaries

nlining
~unction cloning
nterprocedural constant propagation

Individual files compiled as usual

Final linking step does all the optimizations
...and usually takes a lot of time!

Vectorization

o Practically all modern processors support
SIMD instructions

1 Single Instruction Multiple Data 512

Vector width
evolution

256
64 128

for (i=0;i<=MAX;i++)
cli]l=al[i]+b[1];

MMX SSE AVX AVX-512

2 a 2| R BUERSYl afi+4] @li®s3] afi+2] ali+1] Zali]
+ +

iy S %57 BTG

Jmn atb

ol

gliro|

11011dx3 [lenue

D
7p)
>
e
2
@
L
a
=
V)

Parallelization

_
« Most modern processors have multiple cores

* |f you don’t employ parallelization, all but one
core are lost

« Different OS-specific standards: pthreads,
Windows threads, Apple blocks

* OpenMP is a platform- and
vendor- neutral standard
You had a separate lecture on it

What value Intel Compiler adds?

Focused on delivering maximum performance on
1A

Powerful loop, profile-based and IPO optimizations
Beats other compilers

Used by practically everyone to publish SPEC scores
on IA

Intel compiler developers collaborate with Intel
HW engineers to implement optimizations

Supports latest IA instructions
Usually much sooner than other compilers

What value Intel Compiler adds?,
cont

Supports latest parallel programming
standards

OpenMP 4.0
CilkPlus

Broad support for vectorization on |A

From manual to automatic, with #pragma omp
simd in between

Latest SIMD extensions

What to read

Bacon at al, “Compiler
Transformations for high- s
p e rf O rm a n C e C O m p u ti n g ”n , AC M Computer Science Divisson, Uniwersity of California, Berkeley, California 94720
Computing Surveys, Dec 1994 pmemememaoa
Steven Muchnick, “Advanced)
Compiler Design and
Implementation”, Morgan
Kaufmann, 1997

Schouten at al, “Inside the Intel
Compiler”, Linux Journal, Feb
2003

PLDI, CGO conferences

Thank you for your time!
S =

Questions?
o andreybokhanko@gmail.com

