
Sergei Strijhak (ISP RAS, Moscow, Russia)

27.06.2016

Free convection in a chamber
with heating from bottom

Free convection in a chamber with heating from bottom

A flow of compressible liquid (air) with subsonic velocity under the action
of the buoyant force (according to the Archimedes' principle) in a cubic
closed volume is examined.

The buoyant force appears as a result of medium heating in some area
of the lower wall.

∇
T

=
0

∇
T

=
0

T = 3000C

T = 6000C

FREE CONVECTION — GOALS AND OBJECTIVES

In this example we'll see:
● How to set up the computational model for compressible problem solving, what input data are
necessary for this;
● How to realize the computation with heat transfer and what parameters of the computational
scheme to use;
● How to execute the steady state calculations (SIMPLE method);
● How to set up a non-uniform distribution of value over the space of boundaries with the help of
user OpenFOAM utilities

FREE CONVECTION — MESH CONSTRUCTION
Computational domain — hexahedron of dimensions 10x5x10 (XYZ). The lower plane is heated
from bottom, the upper one cools the chamber, the other walls are adiabatic.

∇
T

=
0

∇
T

=
0

T = 3000C

T = 6000CZ
X

Y

0

1

2

3

4

5

6

7

convertToMeters 1;

vertices
(
 (0 0 0)
 (10 0 0)
 (10 5 0)
 (0 5 0)
 (0 0 10)
 (10 0 10)
 (10 5 10)
 (0 5 10)
);

blocks
(
 hex (0 1 2 3 4 5 6 7) (20 10 20) simpleGrading (1 1 1)
);

FREE CONVECTION — BOUNDARIES
Computational domain — hexahedron of dimensions 10x5x10 (XYZ). The lower plane is heated
from bottom, the upper one cools the chamber, the other walls are adiabatic.

patches
(
 wall floor
 (
 (1 5 4 0)
)
 wall ceiling
 (
 (3 7 6 2)
)
 wall fixedWalls
 (
 (0 4 7 3)
 (2 6 5 1)
 (0 3 2 1)
 (4 5 6 7)
)
);

Lower wall (with heating from the center). Temperature assignment

Upper wall (cooling). Temperature assignment

Other walls are adiabatic.
Assignment of zero temperature gradient

FREE CONVECTION — BOUNDARY CONDITIONS (1)

1. Velocity U. As the liquid doesn't enter the computational domain and doesn't leave it, the slip
condition — equality to zero of the velocity vector — is assigned on all the walls.

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{
 floor
 {
 type fixedValue;
 value uniform (0 0 0);
 }

 ceiling
 {
 type fixedValue;
 value uniform (0 0 0);
 }

 fixedWalls
 {
 type fixedValue;
 value uniform (0 0 0);
 }
}

2. Pressure p. As the liquid doesn't enter the computational domain and doesn't leave it, the slip
condition — equality to zero of the velocity vector — is assigned on all the walls.

In OpenFoam 1.7.1 for buoyancy problem solving there are two pressures: hydrostatic (p), аnd the
second surplus, devoid of the product

For the first pressure the BC is calculated, for the second one the setting is buoyantPressure

FREE CONVECTION — BOUNDARY CONDITION (2)

ρ gh

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 1e5;

boundaryField
{
 floor
 {
 type calculated;
 value $internalField;
 }

 ceiling
 {
 type calculated;
 value $internalField;
 }

 fixedWalls
 {
 type calculated;
 value $internalField;
 }
}

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 1e5;

boundaryField
{
 floor
 {
 type buoyantPressure;
 value uniform 1e5;
 }

 ceiling
 {
 type buoyantPressure;
 value uniform 1e5;
 }

 fixedWalls
 {
 type buoyantPressure;
 value uniform 1e5;
 }
}

FREE CONVECTION — BOUNDARY CONDITIONS (3)

3. Turbilent model's fields — k (turbulence kinetic energy), epsilon (dissipation of turbulence
kinetic energy), alphat and mut — turbulent diffusion and turbulent dynamic viscosity coefficients
respectively. For all the four values the wall-functions are applied, hence the BC can be written
the next way:

 type compressible::kqRWallFunction;
 value uniform 0.1;

 type compressible::epsilonWallFunction;
 value uniform 0.01;

 type mutWallFunction;
 value uniform 0;

 type alphatWallFunction;
 value uniform 0;

Before the type definition of k and epsilon (or of an other value) you need to put compressible::
to destinguish them from the uncompressible wall-functions. For mut and alphat it isn't requiered

FREE CONVECTION — BOUNDARY CONDITIONS (4)

3. Temperature T. In this problem there will be two temperature fields — T.org (original) and T, that
will be used in calculations. The last differs from the first one by non-uniform temperature
distribution on the lower wall (with the maximum in the center).

dimensions [0 0 0 1 0 0 0];

internalField uniform 300;

boundaryField
{
 floor
 {
 type fixedValue;
 value uniform 300;
 }

 ceiling
 {
 type fixedValue;
 value uniform 300;
 }

 fixedWalls
 {
 type zeroGradient;
 }
}

Dimensions — К (Kelvins),
Initial condition in the volume - 300K

Lower wall — uniform 300K (T.org)
on the whole surface, afterwards -
600К on the center, 300К on the other cells

Upper wall — uniform 300K
on the whole surface

Adiabatic side walls —
zero gradient

FREE CONVECTION — BOUNDARY CONDITIONS (4)

3. Temperature T. In this problem there will be two temperature fields — T.org (original) and T, that
will be used in calculations. The last differs from the first one by non-uniform temperature
distribution on the lower wall (with the maximum in the center).

dimensions [0 0 0 1 0 0 0];

internalField uniform 300;

boundaryField
{
 floor
 {
 type fixedValue;
 value uniform 300;
 }

 ceiling
 {
 type fixedValue;
 value uniform 300;
 }

 fixedWalls
 {
 type zeroGradient;
 }
}

Dimensions — К (Kelvins),
Initial condition in the volume - 300K

Lower wall — uniform 300K (T.org)
on the whole surface, afterwards -
600К on the center, 300К on the other cells

Upper wall — uniform 300K
on the whole surface

Adiabatic side walls —
zero gradient

FREE CONVECTION — BOUNDARY CONDITIONS (4)

3. Temperature T. In this problem there will be two temperature fields — T.org (original) and T, that
will be used in calculations. The last differs from the first one by non-uniform temperature
distribution on the lower wall (with the maximum in the center).

dimensions [0 0 0 1 0 0 0];

internalField uniform 300;

boundaryField
{
 floor
 {
 type fixedValue;
 value uniform 300;
 }

 ceiling
 {
 type fixedValue;
 value uniform 300;
 }

 fixedWalls
 {
 type zeroGradient;
 }
}

Dimensions — К (Kelvins),
Initial condition in the volume - 300K

Lower wall — uniform 300K (T.org)
on the whole surface, afterwards -
600К on the center, 300К on the other cells

Upper wall — uniform 300K
on the whole surface

Adiabatic side walls —
zero gradient

FREE CONVECTION — BOUNDARY CONDITIONS (5)

To construct a non-uniform tempreture field on the lower wall we'll use the setHotRoom utility, its
initial code is located in the example's folder.

The initial code of every OpenFOAM application necessarily contains the next files:
● Make catalogue — files controlling the assembly of the package by means of the wmake utility.
● Make/options — compilation and assembly options, that are communicated to the wmake utility
● Make/files — list of compiled files and name of the executed module
● <Programme_name>.C — at the least one of the initial files must be mentioned in Make/files

setHotRoom.C

EXE = $(FOAM_USER_APPBIN)/setHotRoom

EXE_INC = \
 -I$(LIB_SRC)/finiteVolume/lnInclude

EXE_LIBS = \
 -lfiniteVolume

Name of the compiled file

Location of the exe-file

Compilation options

Assembling options

Make/files

Make/options

FREE CONVECTION — BOUNDARY CONDITIONS (6)

The initial code of the application setHotRoom.C is typical for C++ programmes, first of all we
link up the heading files:

#include "fvCFD.H"
#include "OSspecific.H"
#include "fixedValueFvPatchFields.H"

......

int main(int argc, char *argv[])
{

include "setRootCase.H"

include "createTime.H"
include "createMesh.H"
include "createFields.H"

Main procedure (enter point)

Mandatory stages of the initialization:

 Set-up of the file system parameters

 construction of the time counter (physical)
 mesh construction (loading to the memory)
 construction (reading) of the essential values'
fields

FREE CONVECTION — BOUNDARY CONDITIONS (7)

More in detail about createFields.H and its content:

 Info<< "Reading field T\n" << endl;
 volScalarField T
 (
 IOobject
 (
 "T",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

In the body of the main(...) function setHotRoom.C performs the procedure of initialization of
the local temperature field values on the surface «floor».

FREE CONVECTION — BOUNDARY CONDITIONS (8)

// List of all the outer surfaces of the model
volScalarField::GeometricBoundaryField& Tpatches = T.boundaryField();

// FORloop for all surfaces
forAll(Tpatches, patchI)
{

// If the the surface name is «floor»
if
 (
 isA<fixedValueFvPatchScalarField>(Tpatches[patchI])
 && mesh.boundaryMesh()[patchI].name() == "floor"
)
 {

//Get the list of face centers of this surface
 fixedValueFvPatchScalarField& Tpatch =
 refCast<fixedValueFvPatchScalarField>(Tpatches[patchI]);

 const vectorField& faceCentres =
 mesh.Cf().boundaryField()[patchI];

FREE CONVECTION — BOUNDARY CONDITIONS (9)

For all the faces with the center corresponding to 4.5<Xc<5.5 and 4.5<Zc<5.5 we set the local
temperature 600K

 forAll(faceCentres, facei)
 {
 if
 (
 (faceCentres[facei].x() > 4.5) &&
 (faceCentres[facei].x() < 5.5) &&
 (faceCentres[facei].z() > 4.5) &&
 (faceCentres[facei].z() < 5.5)
)
 {
 Tpatch[facei] = 600;
 }
 else
 {
 Tpatch[facei] = 300;
 }
 }
 };

FREE CONVECTION — BOUNDARY CONDITIONS (10)

Finally, we proceed writing of the temperature fields to the file and return to the operating
system

 Info<< "Writing modified field T\n" << endl;
 T.write();

 Info<< "End\n" << endl;

 return 0;

To compile the programme it is necessary to move to the folder with the initial code in the
command line and execute wmake

To initialize a non-uniform temperature field you need to do the next:
● Move the content of the file T.org in T: cat T.org > T
● Run setHotRoom utility

● Not forget to control the mesh — checkMesh!!!

FREE CONVECTION — CONSTANT ENVIRONMENT SET-UP(1)

During heat transfer problem solving you need to regulate the equation of state. OpenFOAM
uses only the Clapeyron-Mendeleev equation p/V=nRT

All other properties depend on this above dependence. Thermophysical properties are assigned in
constant/thermophysicalProperties

thermoType
hRhoThermo<pureMixture<constTransport<specieThermo<hConstThermo<perfectGas>>>>>;

mixture air 1 28.9 1000 0 1.8e-05 0.7;

pRef 100000;

Entry thermoType can be interpreted as:

hrhoTermo — properties depend on enthalpy, density (rho) is a function of T and p
pureMixture — specificator by default (there is only one liquid type)
constTransport — constant viscosity(1.8e-5)
specieThermo<hConstThermo<...> - constant basic enthalpy, h=h0+dT*(dh/dT)

1 mol of a substance with the molar weight 28.9, isobaric heat capacity 1000, initial enthalpy 0,
viscosity 1.8e-5 and Prt=0.7

FREE CONVECTION — CONSTANT ENVIRONMENT SET-UP (2)

On the next stage the method of turbulence modelling is defined. As far as the problem is steady
only the RAS (Reynolds Averaged Stresses) method is available. File —
constant/turbulenceProperties.

simulationType RASModel;

After defining the turbulence model's class we define its type (in this example — k-e), file
constant/RASProperties

RASModel kEpsilon;

turbulence on;

printCoeffs on;

RASModel — model type (laminar, kEpsilon, kOmegaSST, kOmega, realizableKE)

turbulence — will we use or not the RAS model to calculate the stress tensor

printCoeffs — do we need to print the model's coefficients?

FREE CONVECTION — CONSTANT ENVIRONMENT SETTINGS (3)

Finally, we define the free fall acceleration vector's direction (file constant/g)

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.1
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class uniformDimensionedVectorField;
 location "constant";
 object g;
}
// * //

dimensions [0 1 -2 0 0 0 0];
value (0 -9.81 0);

// *** //

FREE CONVECTION: SETTINGS FOR NUMERICAL SCHEMES (1)

Finally, we need to adjust the numerical shemes. As in the previous examples it is implemented in
system/fvSchemes. For divergent items the upwind scheme is chosen, for the diffusion — the
scheme of central differences linear.

An important difference is that the Euler time differentiation scheme (ddtSchemes) is
implemented, though for the steady state we can choose the option steadyState — the time
derivative is equal to 0

Then, as before, we define the method to solve the SLE in the file system/fvSolution. There is no
necessity in having a strict solution on each step, that's why the relative precision relTol can take
values of order 0.01 — 0.001

 p_rgh
 {
 solver PCG;
 preconditioner DIC;
 tolerance 1e-8;
 relTol 0.01;
 }

FREE CONVECTION: SETTINGS FOR NUMERICAL SCHEMES(2)

In conclusion, we'll set the output and integration parameters (system/controlDict)

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression
uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep no;

maxCo 0.5;

application buoyantPimpleFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 2000;

deltaT 2;

writeControl timeStep;

writeInterval 100;

FREE CONVECTION: RUN & MONITOR

Let's run the programme:

rm -rf run.log; buoyantPimpleFoam | tee -a run.log

FREE CONVECTION: VISUALIZATION (1)

FREE CONVECTION: VISUALIZATION (2)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

