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Main steps and modules in CFD



ОpenFOAM — Open Source Software.

OpenFOAM — written on С++ using object-oriented techniques.

ОpenFOAM – A tensorial approach to computational continuum mechanics.

OpenFOAM – Object-orientation techniques enable the creation of data types

that closely mimic those of continuum mechanics, and the operator overloading 

possible in C++ allows normal mathematical symbols to be used for the basic 

operations.

OpenFOAM – software which is used in industry and education

Salome – CAD/CAE Platform. 

Pre-processor. 

Paraview – Post-processor.



OpenFoam. History.

Developed in Imperial College of Science, London, UK. 1991-2003

Main developers: Ph.D. students (H. Weller and H. Jasak ) of Imperial College, London, 

Research Supervisor: prof. А.D. Gosman. 

Open Foam became Open Source code in 2004 on GPL license

Literature:

- Weller, H.G.; Tabor G.; Jasak, H. and Fureby, C.: A Tensorial Approach to CFD using 

Object Orientated Techniques, Computers in Physics, 1998 v. 12 n. 6, pp 620 – 631

- Ferziger J.H., Peric M., Computational Methods for Fluid Dynamics. Springer-Verlag, 

Berlin et al.: Springer, 2002. – 423p

- B. Stroustrup, The C++ Programming Language, 3rd ed.

Main version: OpenCFD, UK  - www.openfoam.org

Open Source Conferences with OpenCFD, Ltd – 2007,2008, 2009

OpenFoam Workshop – 2008-2015

OpenFOAM Summer School in Zagreb for two weeks

http://powerlab.fsb.hr/ped/kturbo/OpenFOAM/docs/Foam.pdf
http://www.openfoam.org/


$FOAM_APP/solvers

DNS basic combustion

compressible discreteMethods electromagnetics

financial heatTransfer incompressible

lagrangian multiphase stressAnalysis

Hierarchy of solvers in OpenFOAM

Incompressible flows

Multiphase flows



OPEN FOAM

Hierarchy of means in OpenFOAM

An advantage of OpenFOAM — flexible orientation on the user:

Advanced User — tools for development of new solvers and physical 

models using C++ and OpenFOAM classes.

Engineers — a scope of ready solvers (~80) and utilities (~170) for 

computational continuum mechanics

Finite Volume Method

Different Utilities Different Solvers



Structure of OpenFOAM

*    applications: source codes of solvers

- Solvers

- Utilities

- Bin

- Test

* bin: binary files

* doc: pdf и Doxygen файлы

- Doxygen

- Guides-a4

* lib: libraries

*    src – source codes

*    tutorials – tutorials

*    Wmakes – utility for compilation



Main conservation laws

• Mass, momentum, scalar and volume equations in integral form:



Finite Volume Method in OpenFOAM

Domain discretization in time and

3 directions
Two cells and main their values (cell,

Centroid , Face, Normal)



Supported cells in OpenFOAM



Case directory in OpenFOAM



Test cases in OpenFOAM

Mesh for cavity
Simulation with 

rhoCentralFoam

Cavity Forward step



Test cases OpenFOAM

• Mass conservation

• Ideal gas

•Momentum conservation

•Уравнение энергии для жидкости (пренебрегая 

некоторыми членами вязкости),

e = CvT, по закону Фурье q = −k∇T

Клин с 15 град. M=5

rhoCentralFoam



Test case PitzDaily in OpenFOAM

LES model. 1 equation.



airfoil2D. U= (25.75 3.62 0). S-A turbulence model.



Finite Volume Method in OpenFOAM

Neighbor cells



1. We want to solve the general transport equation for the

transported quantity in a given domain, with given boundary

conditions and initial conditions.

2. This is a second order equation. For good accuracy, it is

necessary that the order of the discretization is equal or higher

that the order of the equation that is being discretized.

3. Hereafter we are going to assume that the discretization

practice is at least second order accurate in space and time.

The general transport equation as the starting point to explain the FVM



How to vary variables linearly



Let us divide the solution domain into arbitrary control volumes 

such as the one illustrated below.

The control volumes can be of any shape 

(e.g., tetras, hexes, prisms, pyramids, 

dodecahedrons, and so on).

• The only requirement is that the 

elements need to be convex and the 

faces that made up the control volume, 

need to be planar.

• We know all the connectivity 

information (P location, neighbors N’s 

of P, faces connectivity, vertices 

location and so on).



1. The control volume has a volume Vp and is constructed around point P, which is 

the centroid of the control volume. Therefore the notation Vp.

2. The vector from the centroid P of Vp to the centroid N of  Vn is named d.

3. The control volume faces are labeled  f , which also denotes the face center.

4. The location where the vector d intersects a face is fi.

5. The face area vector point outwards from the control volume, is located at the

face centroid, is normal to the face and has a magnitude equal to the area of  the   

face.

6.   The vector from the centroid P to the face center f is named Pf.

Main ideas of FVM



Formula for centroid of control volume



Formula for centroid of control volume



Main equation and discretization of terms

Gauss’s theorem



Numerical schemes of 1 and 2 orders

Second order upwind 

(SOU) 

Differencing scheme

Upwind differencing scheme (First order accurate)Central differencing scheme

(Second order accurate)



SOU scheme and limiter function



Skew mesh



Standard solvers in OpenFOAM

1) icoFoam – solver for incompressible flow

2) rhoCentralFoam - solver for compressible flow with KNT scheme

3) simpleFoam - solver for steady incompressible, turbulent flow. 

4) pisoFoam – solver for unsteady incompressible turbulent flow.

5) sonicFoam – solver for unsteady compressible turbulent flow.

6) buoyantSimpleFoam – Steady-state solver for buoyant, turbulent flow of compressible 
fluids 

7) interFoam – solver for multiphase flow with VOF

8) twoPhaseEulerFoam - solver for multiphase flow using Eulerian-Eulerian approach

9) dsmcFoam DSMC= Direct Simulation Monte-Carlo solver for rarefied gas dynamics

10) engineFoam – solver for flow simulation in internal combustion engine



Numerical schemes in OpenFOAM

• Convective terms:

• Central differencing schemes:

- Linear – central differencing (CD) ( Second order, 
unbounded )

-Midpoint

• Wind schemes:

- Upwind differencing (UD) ( First order, bounded )

- LinearUpwind

- skewLinear

- QUICK ( First/second order, bounded )

TVD schemes:

-LimitedLinear

-vanLear

-MUSCL

-limitedCubic

NVD – normalized variable diagram

-SFCD (self-filtered central differencing )

( Second order, bounded )

-Gamma & GammaV (Schemes of H.Jasak)

( First/second order, bounded )

• Time differencing schemes:

-Euler ( 1 and 2 order);

-Crank-Nikolson (2 order);

- Backward;

- Limited backward

Schemes for diffusive terms:

- Gauss linear – 2 order

- Gauss limited linear

- leastSquares

- Fourth – 4 order

More then 50 different combination of 
schemes



Examples of Boundary Conditions

Name of BC Description

fixedValue Boundary Condition Type 1. Dirihle condition

fixedGradient Boundary Condition Type 2. 

zeroGradient Boundary Condition Type 2. Neiman condition

inletOutlet
Works as BC Type 1 as flow goes inside domain and works as BC Type 2 as flow goes out of domain

outletInlet Opposite to inletOutlet

Mixed, symmetry plane, 
periodic and cyclic

freestream, 
freestreamPressure

Mixed condition, symmetry condition, periodic and cyclic conditions

Freestrem BC



Dimension of values in OpenFOAM

No. Characteristics Unit of measure Symbol

1 Mass Kilogram Kg

2 Length Metr М

3 Time Second S

4 Temperature Temperature К

5 Amount of substance Mol Mol

6 Current А A

7 Light intensity Candella Candella



1) kEpsilon Standard high- model 

2) kOmega Standard high- model 

3) kOmegaSST -SST model 

4) RNGkEpsilon RNG   model 

5) NonlinearKEShih Non-linear Shih   model 

6) LienCubicKE Lien cubic   model 

7) qZeta model 

8) LaunderSharmaKE Launder-Sharma low- model 

9) LamBremhorstKE Lam-Bremhorst low- model 

10) LienCubicKELowRe Lien cubic low- model 

11)LienLeschzinerLow Lien-Leschziner low- model 

12) LRR Launder-Reece-Rodi RSTM 

13) 
LaunderGibsonRSTM

Launder-Gibson RSTM with wall-reflection terms 

14) realizableKE Realizable   model 

15) SpalartAllmaras Spalart-Allmaras 1-eqn mixing-length model

Turbulence models for incompressible flow



k-omega SST turbulence model
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Turbulence model of Spalart-Allmaras 

(http://turbmodels.larc.nasa.gov/spalart.html)

The rotation tensor;

Stress tensor of velocity



Models of wall functions for turbulence models

OpenFOAM realization

For different values:

– nut: nutWallFunction,

- epsilon: 
epsilonWallFunction,

- omega: 
omegaWallFunction,

- k, q, R: 
kqRWallFunction

- nut –
nutSpalartAllmarasWall
Function. 

For temperature:

- alphat: 
alphatWallFunction. 

The region near wall may be devided on 3 zones: 

1) Viscous layer: 

2) Buffer layer: 

3) Logarifmic layer : 

k – const Karman, Е – const for wall Е = 8.8). 

u y  u
u

u

 
u y

y 
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  u 
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Flow velocity

where Const of turbulence model, 

turbulence scale 

BC for k-epsilon и k-omega SST turbulence models

Kinetic energy of turbulence

Kinetic energy of turbulence

the rate of dissipation of the eddies

Intensity of turbulence

Dissipation of energy



Internal Libraries  in OpenFOAM

• "libincompressibleRASModels.so"  - library 
for models of turbulence;

• libforces.so – library for aerodynamic forces 
and moments;

• libLESfilters.so – library for LES filters;

• libODE.so – library for Ord Differentinal 
Equations solver;

• libscotch.so – library for parallel algorithm

‘scotch’;

• libliquids.so – library for liquids with 
different properties;

• libsolids.so – library for solids with different 
properties;

• libOpenFoamTurbo.so – library for definition 
of 1D fixed value profile (radial or vertical) 
for a typical Residuals for Ux,Uy,Uz, p, nuTilda

Graphics of residuals using
Linux gnuplot and python script



A skew mesh



Orthogonal and non-orthogonal



Orthogonal and non-orthogonal





Face gradient



A mesh induced errors



General transport equation



Time discretization 



A system of linear algebraic equations



Different Operators in OpenFoam



Continuity equation

(OpenFoam/OpenFoam -1.6/src/finiteVolume/cfdTools/compressible/rhoEqn.h)

\*---------------------------------------------------------------------------*/ 

{ 

solve(fvm::ddt(rho) + fvc::div(phi)); 

} 

// *************************************************************** // 

where          is density and           is velocity. U

http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#426b21d70ddcb6262656ee7a9198ee37
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam_1_1fvm.html#03db5c4d48062014119b20e10567a1a1
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam_1_1resError.html#4ea974f0c02f71146b55ccd8dcf35c4b


Momentum equations

(applications/solvers/heatTransfer/buoyantFoam/UEqn.H)

where is the effective viscosity

is laminar kinematics viscosity,

is turbulent viscosity.

eff

arlamin

turbulent



Pressure correction equation

(applications/solvers/heatTransfer/buoyantFoam/pEqn.H ):



Energy equation

(applications/solvers/heatTransfer/buoyantFoam/hEqn.H)



Programming in OpenFoam

solve

(

fvm::ddt(rho, U)

+ fvm::div(phi, U)

- fvm::laplacian(mu, U)

==

- fvc::grad(p)

);



Five basic classes in foam-extend

Space and time: polyMesh, fvMesh, Time

Field algebra: Field, DimensionedField and GeometricField

Boundary conditions: fvPatchField and derived classes

Sparse matrices: lduMatrix, fvMatrix and linear solvers

Finite Volume discretisation: fvc and fvm namespace



Representation of Time

• Main functions of Time class

◦ Follow simulation in terms of time-steps: start and end time, delta t

◦ Time is associated with I/O functionality: what and when to write

◦ objectRegistry: all IOobjects, including mesh, fields and dictionaries

registered with time class

◦ Main simulation control dictionary: controlDict

◦ Holding paths to <root>, <case> and associated data

• Associated class: regIOobject: database holds a list of objects, with

functionality held under virtual functions



Representation of Space

• Computational mesh consists of

◦ List of points. Point index is determined from its position in the list

◦ List of faces. A face is an ordered list of points (defines face normal)

◦ List of cells OR owner-neighbour addressing (defines left and right cell for

each face, saving some storage and mesh analysis time)

◦ List of boundary patches, grouping external faces
• polyMesh class holds mesh definition objects

• primitiveMesh: some parts of mesh analysis extracted out (topo changes)

• polyBoundaryMesh is a list of polyPatches

Finite Volume Mesh
• polyMesh class provides mesh data in generic manner: it is used by multiple

applications and discretisation methods

• For convenience, each discretisation wraps up primitive mesh functionality to 

suit

its needs: mesh metrics, addressing etc.
• fvMesh: mesh-related support for the Finite Volume Method



Finite Volume Boundary Conditions

• Implementation of boundary conditions is a perfect example of a virtual class

hierarchy

• Consider implementation of a boundary condition

◦ Evaluate function: calculate new boundary values depending on behaviour:

fixed value, zero gradient etc.

◦ Enforce boundary type constraint based on matrix coefficients

◦ Multiple if-then-else statements throughout the code: asking for trouble

◦ Virtual function interface: run-time polymorphic dispatch

• Base class: fvPatchField

◦ Derived from a field container
◦ Reference to fvPatch: easy data access

◦ Reference to internal field
• Types of fvPatchField

◦ Basic: fixed value, zero gradient, mixed, coupled, default

◦ Constraint: enforced on all fields by the patch: cyclic, empty, processor,

symmetry, wedge, GGI

◦ Derived: wrapping basic type for physics functionality



Sparse Matrix Class

• Some of the oldest parts of OpenFOAM: about to be thrown away for more

flexibility

• Class hierarchy
◦ Addressing classes: lduAddressing, lduInterface, lduMesh

◦ LDU matrix class

◦ Solver technology: preconditioner, smoother, solver

◦ Discretisation-specific matrix wrapping with handling for boundary conditions,

coupling and similar

LDU Matrix

• Square matrix with sparse addressing. Enforced strong upper triangular

ordering in matrix and mesh

• Matrix stored in 3 parts in arrow format

◦ Diagonal coefficients

◦ Off-diagonal coefficients, upper triangle

◦ Off-diagonal coefficients, lower triangle
• Out-of-core multiplication stored as a list of lduInterface with coupling

functionality: executed eg. on vector matrix multiplication



LDU Matrix: Storage format

• Arbitrary sparse format. Diagonal coefficients typically stored separately

• Coefficients in 2-3 arrays: diagonal, upper and lower triangle

• Diagonal addressing implied

• Off-diagonal addressing in 2 arrays: “owner” (row index) “neighbor” (column

index) array. Size of addressing equal to the number of coefficients

• The matrix structure (fill-in) is assumed to be symmetric: presence of aij implies

the presence of aji. Symmetric matrix easily recognized: efficiency

• If the matrix coefficients are symmetric, only the upper triangle is stored – a

symmetric matrix is easily recognized and stored only half of coefficients

vectorProduct(b, x) // [b] = [A] [x]

{
for (int n = 0; n < coeffs.size(); n++)

{
int c0 = owner(n);

int c1 = neighbour(n);

b[c0] = upperCoeffs[n]*x[c1];

b[c1] = lowerCoeffs[n]*x[c0];

}}



Finite Volume Matrix Support

• Finite Volume matrix class: fvMatrix

• Derived from lduMatrix, with a reference to the solution field

• Holding dimension set and out-of-core coefficient

• Because of derivation (insufficient base class functionality), all FV matrices are

currently always scalar: segregated solver for vector and tensor variables

• Some coefficients (diagonal, next-to-boundary) may locally be a higher type, but

this is not sufficiently flexible

• Implements standard matrix and field algebra, to allow matrix assembly at

equation level: adding and subtracting matrices

• “Non-standard” matrix functionality in fvMatrix

◦ fvMatrix::A() function: return matrix diagonal in FV field form

◦ fvMatrix::H(): vector-matrix multiply with current psi(), using

off-diagonal coefficients and rhs
◦ fvMatrix::flux() function: consistent evaluation of off-diagonal product in

“face form”. See derivation of the pressure equation

• New features: coupled matrices (each mesh defines its own addressing space)

and matrices with block-coupled coefficients



Finite Volume Discretization

• Finite Volume Method implemented in 3 parts

◦ Surface interpolation: cell-to-face data transfer
◦ Finite Volume Calculus (fvc): given a field, create a new field

◦ Finite Volume Method (fvm): create a matrix representation of an operator,

using FV discretization

• In both cases, we have static functions with no common data. Thus, fvc and

fvm are implemented as namespaces

• Discretization involves a number of choices on how to perform identical 

operations:

eg. gradient operator. In all cases, the signature is common
volTensorField gradU = fvc::grad(U);

• Multiple algorithmic choices of gradient calculation operator: Gauss theorem, least

square fit, limiters etc. implemented as run-time selection

• Choice of discretization controlled by the user on a per-operator basis:
system/fvSolution

• Thus, each operator contains basic data wrapping, selects the appropriate 

function from run-time selection and calls the function using virtual function 

dispatch



Application  pisoFoam
Description Transient solver for incompressible flow.

Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.

\*---------------------------------------------------------------------------*/

#include "fvCFD.H"

#include "singlePhaseTransportModel.H"

#include "turbulenceModel.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

#include "createMesh.H"

#include "createFields.H"

#include "initContinuityErrs.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

#include "readPISOControls.H"

#include "CourantNo.H"

// Pressure-velocity PISO corrector

{

// Momentum predictor

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

+ turbulence->divDevReff(U)

);

UEqn.relax();

if (momentumPredictor)

{

solve(UEqn == -fvc::grad(p));

}



// --- PISO loop

for (int corr=0; corr<nCorr; corr++)

{

volScalarField rUA = 1.0/UEqn.A();

U = rUA*UEqn.H();

phi = (fvc::interpolate(U) & mesh.Sf())

+ fvc::ddtPhiCorr(rUA, U, phi);

adjustPhi(phi, U, p);

// Non-orthogonal pressure corrector loop

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

// Pressure corrector

fvScalarMatrix pEqn

(

fvm::laplacian(rUA, p) == fvc::div(phi)

);

pEqn.setReference(pRefCell, pRefValue);

if (

corr == nCorr-1

&& nonOrth == nNonOrthCorr)

{

pEqn.solve(mesh.solver("pFinal"));

}

else

{

pEqn.solve();

}

if (nonOrth == nNonOrthCorr)

{

phi -= pEqn.flux();

} }

#include "continuityErrs.H"

U -= rUA*fvc::grad(p);

U.correctBoundaryConditions();

} }

turbulence->correct();

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< "  ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return 0; }

// ****************************************************************** //



File .bashrc
• .bashrc is for settings in Linux

• File .bashrc is located in …/home/guest1

• For OpenPBS settings need to add:

export  

PATH=/usr/local/bin:/usr/local/maui/bin:/opt/maui/bin:/opt/ma

ui/3.3.1/bin/:/opt/torque/4.0.2/bin:/opt/pdsh/2.27/bin:$PATH

export TORQUE=/opt/torque/4.0.2/bin

For OpenFOAM settings:

source /unicluster/bl2x220Cluster/opt/OpenFOAM/OpenFOAM-

2.3.0/etc/bashrc

Then add source strings for anothed OpenFoam version
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