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Quantum(-like) operational representation of the process
of decision making by cognitive systems
My talk is not about quantum brain in the spirit of R. Penrose

and S. Hameroff. We do not try to reduce information processing by
cognitive system to quantum physical effects.
The brain is a black box which works with information and probabilities

in such a way that some features of processing cannot be described by
classical theories. And there are a plenty of statistical data in cognitive
psychology, game theory, decision making. One just has to understand
its non-classicality, see:
A. Khrennikov, Ubiquitous quantum structure: from psychology to

finances, Springer, Berlin-Heidelberg-New York, 2010.
In cognitive psychology such data is interpreted as pathological. We

propose to consider data as simply nonclassical and try to apply the
most well developed non-classical theories of information and probability,
namely, based on the mathematical formalism of QM.
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Law of total probability (LTP) .
Theorem in the Kolmogorov probability model. It is a consequence of

additivity of probability and Bayes’ formula for conditional probabilities.

(1) p(B|A) = p(B ∩A)/p(A), p(A) > 0.

Consider two random variables a = ±1, b = ±1. The b-variable
describes decisions. So, we can make the decision b = +1, “yes”, or
b = −1, “no”. The a-variable describes possible conditions, contexts,
preceding the decision making.
For example, a = +1 : the climate will change towards warming,
a = −1 : not; b = +1 : to buy a property near sea, b = −1 : not.
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LTP The prior probability to obtain the result, e.g., b = +1 for the
random variable b is equal to the prior expected value of the posterior
probability of b = +1 under conditions a = +1 and a = −1.

p(b = j) =

p(a = +1)p(b = j|a = +1) + p(a = −1)p(b = j|a = −1),

where j = +1 or j = −1.

LTP gives a possibility to predict the probabilities for the b-variable
on the basis of conditional probabilities and the a-probabilities.
The cornerstone of Kolmogorov’s approach is the postulation of a

possibility to embed all complexes of conditions (contexts) preceding
the decision making into one probability space. This postulated (!)
embedding provides a possibility to apply to contexts the set-theoretical
algebra, Boolean algebra, operations of intersection, union and complement.
Each mathematical model has a restricted domain of application;

in particular, the Kolmogorov model of probability (cf. with
the Euclidean model of geometry).
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Two slit experiment and LTP
The b-observable is the position of photon on the registration screen.

To make the b-variable discrete, we split the registration screen into
two domains say B+ and B−. The a-variable describes the slit which
is used by a particle; say a = +1 the upper slit and a = −1 the lower
slit. Consider three different experimental contexts:
C : both slits are open. We can find p(b = +1) and p(b = −1)

from the experiment as the frequencies of photons hitting the domains
B+ and B−, respectively.
Ca

+ : only one slit, labeled by a = +1, is open. We can find p(b =

j|a = +1), j = ±1.

Ca
− : only one slit, labeled by a = −1, is open. We can find p(b =

j|a = −1), j = ±1, the frequencies of photon hitting B+ and B−,
respectively.
If we put these frequency-probabilities, collected in the

three real experiment, we see that LTP is violated.
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Can LTP be violated outside quantum physics? Why not!
What was the crucial probabilistic point of the previous analysis of

the two slit experiment? Three experimental contexts C,Ca
± cannot

be embedded in the same space Ω, since one cannot apply to the real
physical situation the Boolean algebra.
In the philosophic terms this story is about the principle of complementarity.

If we specify the slit, e.g., context Ca
+, we specify particle features of

a quantum system. This destroys the context C describing the wave
features (interference of two waves propagating through two open slits).
Historically: principle of complementarity was, in fact, borrowed by N.

Bohr from psychologists. So, now we want to deliver it back to them
but with the great mathematical apparatus.
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Contextual viewpoint on violation of LTP
Given context C (a complex of conditions: physical, social, financial)

and two dichotomous observables a and b.
These variables under context C have probabilities:

p(a = ±1|C), p(b = ±1|C);

here, e.g., p(a = +1|C) is the probability that a = +1 under
context (condition) C.
We emphasize that context-conditioning is not based on the Bayes’

formula.
An important class of contexts is given by selection contexts corresponding

to conditioning upon values of some variable.
Take a variable, say a, taking two values a = ±1. Consider two

contexts Ca
+ : the condition that a takes the value a = +1, and

Ca
− : the condition that a takes the value a = −1.
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For example, a is a question asked to a group (ensemble) of people.
Here contexts Ca

± have the ensemble representation: the Ca
+ by the

ensemble of people who replied “yes” and the Ca
+ by those who replied

“no.”
Take variable b. Under selection-contextsCa

±, perform the b-measurement
and obtain contextual (conditional) probabilities: p(b = ±1|Ca

+), p(b =

±1|Ca
−). To make notation closer to the standard one, we set

p(b = ±1|Ca
+) ≡ p(b = ±1|a = +1), ...

If LTP does not hold true (as a consequence ofmulti-contextuality
with complementary contexts), then the left-hand side of is not
equal to the right-hand side. We call this difference interference term
by analogy with quantum mechanics in which the LTP is violated inducing
so called interference term. In contextual notations the interference
terms are given by

δ(b = ±1|C) = p(b = ±1|C)−
∑
α

p(a = α|C)p(b = ±1|a = α),
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This definition can be rewritten as LTP perturbed by the interference
terms:

p(b = ±1|C) =
∑
α

p(a = α|C)p(b = ±1|a = α) + δ±,

where δ± = δ±(C). By analogy with QM we select normalization:

(2) λ± = δ±/2
√

Π±,

where

(3) Π± ≡ Π±(C) =
∏
α

p(a = α|C)p(b = ±1|a = α)

Thus LTP with interference terms can be written as

p(b = ±|C) =
∑
α

p(a = α|C)p(b = ±1|a = α)+2λ±
√

Π±.
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If the absolute values of the normalized interference term λq is less
than 1 (for some q = ±1), we can find such an angle θq that

(4) λq = cos θq;

In the trigonometric case we have the following LTP with the interference
term:

p(b = ±|C) =
∑
α

p(a = α|C)p(b = ±1|a = α)+2 cos θ±
√

Π±.

This sort of interference between probabilities can be easily derived in
the standard formalism of complex Hilbert space used in QM. Contexts
are represented by quantum states (normalized vectors or more generally
density operators), observables a and b by Hermitian operators or more
generally POVMs, probabilities are defined by Born’s rule.

We remark that λq = 0 for any quantum state iff POVMs
commute.
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In the case of observables given by projection valued measures the
interference coefficients λq ≤ 1. For POVMs they can exceed 1. (see
Foundations of Physics 34 (4), 689-704 (2004).)
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Question: let there are given arbitrary probabilistic data p(b =

±|C), p(a = ±1|C), p(b = ±1|a = ±1). Can we find two
POVMs a and b and density operator reproducing these data?
Modification of the question 2: suppose that the state is given by

ψ =
1
√

2
(|−〉+ |+〉).

Multidimensional case?
Partial solutions: A. Khrennikov, Contextual Approach to

Quantum Formalism. Springer, 2009.
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Interference effects in social science
Savage Sure Thing Principle
Savage, L.J. The foundations of statistics. New York: Wiley

and Sons (1954).
STP If you prefer prospect b+ to prospect b− if a possible future

event A happens (a = +1), and you prefer prospect b+ still if
future event A does not happen (a = −1), then you should prefer
prospect b+ despite having no knowledge of whether or not event A
will happen.
Savage’s illustration refers to a person deciding whether or

not to buy a certain property shortly before a presidential
election, the outcome of which could radically affect the
property market. “Seeing that he would buy in either event,
he decides that he should buy, even though he does not know
which event will obtain”.
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Rationality
A decision maker has to be rational. Thus the STP was

used as one of foundations of rational decision making and
rationality in general. It plays an important role in economics
in the framework of Savage’s utility theory.
Savage’s STP is a simple consequence of LTP.
LTP: Bayes conditioning + additivity of probability.
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Behavioral games: Prisoner’s dilemma
Two suspects, A and B, are arrested by the police. The

police have insufficient evidence for a conviction, and, having
separated both prisoners, visit each of them to offer the
same deal:
a). If one testifies for the prosecution against the other

and the other remains silent, the betrayer goes free and the
silent accomplice receives the full 10-year sentence.
b). If both stay silent, both prisoners are sentenced to only

six months in jail for a minor charge.
c). If each betrays the other, each receives a two-year

sentence.
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Each prisoner must make the choice of whether to betray
the other or to remain silent. However, neither prisoner
knows for sure what choice the other prisoner will make.
So this dilemma poses the question:
How should the prisoners act?
Rational prisoners, i.e., prisoners who proceed on the basis

of Savage STP, should always (both) select the strategy to
betray, i.e., to cooperate with police.
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Violation of rationality in the experiments
The following mental contexts are involved in PD:

Context C, representing the situation when a player has
no idea about the planned action of the other player, “uncertainty
context.”

Context Ca
+, representing the situation when the B-player

supposes that A will stay silent (cooperate), and context
Ca
−, when B supposes that A will betray (compete).
Croson, R. The disjunction effect and reasoning-based choice

in games. Organizational Behavior and Human Decision
Processes 80, 118-133 (1999).
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Another version: Alice is informed about the decision of
Bob.
Shafir, E. and Tversky, A. Thinking through uncertainty:

nonconsequential reasoning and choice. Cognitive Psychology
24, 449-474 (1992)
Tversky, A. and Shafir, E. The disjunction effect in choice

under uncertainty. Psychological Science, 3, 305-309 (1992)
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We define dichotomous variables a and b corresponding
to actions of players A and B : a = +1 if A chooses to
cooperate and a = −1 if A chooses to compete; b values
are defined in the same way.
In the Shafir–Tversky PD experiment: p(b = −1|C) =

0.63 and hence p(b = +1|C) = 0.37;

p−− = 0.97, p−+ = 0.03; p+− = 0.84, p++ = 0.16.

Matrix of transition probabilities

pb|a =

(
0.16 0.84

0.03 0.97

)
.

It is stochastic, but not doubly stochastic!
Here a-probabilities are equal: they were produced simply

by a random generator imitating the first play of the gamble.
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Simple arithmetic calculations give

δ+ = −0.28, λ+ = −0.44, δ− = 0.28, λ− = 0.79.

The coefficients of interference are nonzero! Thus the probabilistic
data are nonclassical. These coefficients are bounded by 1.
Thus, a nonclassical version of LTP (with the trigonometric
interference) holds true. Here probabilistic phases

θ+ = 2.03, θ− = 0.66.
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Order Effects
In a typical opinion-polling experiment, a group of participants

is asked one question at a time, e.g., a =“Is Bill Clinton
honest and trustworthy?” and then b =“Is Al Gore honest
and trustworthy?”
The joint probability distribution is found p(a = α, b =

β), α, β = ±1. Then these questions are asked in the opposite
order, the joint probability distribution is found p(b = β, a =

α), α, β = ±1. And these distributions do not coincide.
Such noncommutative effect cannot be represented in the

Kolmogorov model, by representing questions by random
variables. In the quantum formalism we can easily model
this effect by using non-commutative POVMs.
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(a-a)-problem.
We remark that in fact we have to use projection valued

measures, since if, e.g., the value a = +1 was received and
the question a asked the second time, the answer a = +1

is obtained with probability 1. The same is happens for the
b-question.
Repeatable measurement implies that, in fact, POVM is

a projector valued measure! In the finite dimensional case!
Buscemi, F., D’ Ariano, G. M. and Perinotti, P.: There

exist nonorthogonal quantummeasurements that are perfectly
repeatable. Phys. Rev. Lett. 92, 070403-1 - 070403-4 (2004).
Thus, if we want to describe the Clinton-Gore experiment

in the quantum-like manner we have to represent the questions
A and B by projection-type observables.



Dr
af

t
BigBlueL.png

23/49

JJ
II
J
I

Back

Close

(a-b-a)-problem.
However, the real situation is more complicated. Even in

the sequence (a-b-a), if the first result was a = +1, then for
any result b = β the result of the second a-measurement
is again a = +1 with probability 1. It is possible to show
that this is possible only if a and b are projector valued
measures and they commute. However, commutativity is
incompatible with order effect.
A. Khrennikov, Basieva, I., Dzhafarov, E.N., Busemeyer,

J.R. (2014). QuantumModels for Psychological Measurements
: An Unsolved Problem. PLoS ONE. 9. Article ID: e110909.
For atomic instruments, this was proven in:
I. Basieva, A. Khrennikov, On a possibility to combine

the order effect with sequential reproducibility for quantum
measurements. Found. Phys. 45, N 10, 1379-1393 (2015).
For non-atomic, we do not know, neither in the infinite-

dimensional case.
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Measurement problem in decision making
Nevertheless, majority of physicists are fine with collapse

of the wave function.
In cognitive community there is common opinion that the

mental state dynamics is continuous and selection of different
alternatives in the process of decision making cannot be
modeled by the collapse type process.
One of attempts to solve the measurement problem is

based on consideration of measurement process as the decoherence
process, W. Zurek and recently G. Lindblad. In the limit
t → ∞ the state ρ(t) approaches the state ρout which is
diagonal in "pointer basis".
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Decision making as decoherence
The model is pure informational, both a "quantum-like

system"and bath are represented by their states, ψ and φ,
we are not interested in their physical realizations. In the
PD, the ψ represents Bob’s possible decisions and φ the
"information bath"having some degree of relevance to this
concrete problem; in particular, Bob’s recollections about
Alice. Then we apply theory of open quantum systems and
Gorini-Kossakowski-Sudarshan-Lindblad dynamics to model
experimental data starting from the state of complete uncertainty,
ψ = (|−〉+ |+〉)/

√
2.
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Classical Aumann theorem
Mutual knowledge: everybody in a group of people is aware

about some fact or event.
Common Knowledge: Alice and Bob knows about an event
E and Alice knows that Bob knows about E and so on...
The celebrated Aumann theorem states that if two agents

have common priors, and their posteriors for a given event
E are common knowledge, then their posteriors must be
equal;
Agents with the same priors and common knowledge about

posteriors cannot agree to disagree.
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Criticized assumptions:
a). common priors, but typically it is justified – as the

result of information exchange.
b). common knowledge about posteriors, but again Aumann’s

statement can be violated even in situations, where this
assumption is valid.
This situation is disturbing and the debate about possible

sources of violation Aumann’s theorem are continued.
We point to an implicit assumption of Aumann:
Agents are rational, where rationality is understood as the

use of Bayes’ rule to update probabilities.
Agents may update probabilities with schemes different

from CP. QP update is a possible math formalism describing
non-Bayesian updates. Such agents may agree to disagree;
even with common priors and common knowledge.
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Classical probabilistic approach to common knowledge
Agents, call them i = 1, 2, ..., N. These individuals are

about to learn the answers to various multi-choice questions,
to make observations.
Classical probability space (Ω, F, P ). Events are subsets

of Ω.

Each agent creates its information representation for possible
states of the world based on its own possibilities to perform
measurements, “to ask questions to the world.”
The representations are given by disjoint partitions of Ω :

P (i) = (P
(i)
j ), where

∪jP (i)
j = Ω and P (i)

j ∩ P
(i)
k = ∅, j 6= k.

Thus an agent cannot get to know the state of the world ω
precisely; she can only get to know to which element of its
information partition P (i)

j = P
(i)
j (ω) this ω belongs.
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Definition. The agent i knows an event E in the state of
the world ω if

(5) P
(i)
j (ω) ⊂ E.

It is assumed that on Ω there is defined a probability p,
the common prior of all agents.
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We now present the definition of common knowledge for two agents:

CN An event E is common knowledge at the state of the
world ω if 1 knows E, 2 knows E, 1 knows 2 knows E, 2
knows 1 knows E, and so on.

Denote the set of all states of the world for which E is
common knowledge by the symbol κE.
Aumann: for each agent i, the set κE can be represented

(in the case κE 6= ∅) in the form:

(6) κE = ∪mP (i)
jm
.
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We also remark that the conditional probability qi(ω) that
i-th agent assigns to some event E is defined to be the same
for all states of the world ω in a given element of partition,

qi(ω) = p(E ∩ P (ω))/p(P (ω)).

Thus, in fact,
qi(ω) ≡ qik,

where ω ∈ P (i)
k = P (ω).

Aumann’s theorem states that if both

(7) q1(ω) = q1 and q2(ω) = q2

are common knowledge and prior probabilities are the same,
then necessarily q1 = q2 - simply because

(8) qi = p(E|κCq1q2) = p(E ∩ κCq1q2)/p(κCq1q2),

where Cq1q2 is the event (7)).
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In order to avoid confusion concerning conditioning on
posterior probabilities being common knowledge, we can reformulate
Aumann’s theorem as: given the common priors, posterior
probabilities may be common knowledge only when they
are equal.
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Quantum(-like) formalization of common knowledge

By Birkhoff-von Neumann events are represented as orthogonal
projectors.

For an orthogonal projector P, we set HP = P (H), its
image, and vice versa, for subspace L ofH, the corresponding
orthogonal projector is denoted by the symbol PL.

The set of orthogonal projectors is a lattice with the order
structure: P ≤ Q iff HP ⊂ HQ or equivalently, for any
ψ ∈ H, 〈ψ|Pψ〉 ≤ 〈ψ|Qψ〉. This lattice is called quantum
logic.

Quantum representation of the states of the world

In our model the states of the world are given by pure
states.

Definition. For the state of the world ψ, an event P occurs
(takes place with probability 1) if ψ belongs to HP .



Dr
af

t
BigBlueL.png

35/49

JJ
II
J
I

Back

Close

Questions posed by agents are mathematically described
by self-adjoint operators, say A(i) :

(9) A(i) =
∑
j

a
(i)
j P

(i)
j ,

where (aj) encode possible answers to the question of the
ith agent.
For any agent i, (P

(i)
j ) is a “disjoint partition of unity”:

(10)
∨
k

P
(i)
k = I, P

(i)
k ∧ P

(i)
m = 0, k 6= m.

This spectral family is information representation of the world
by the ith agent.
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Opposite to the classical case, in general the state of the
world ψ need not belong to any concrete subspace H

P
(i)
k

.

Nevertheless, for any pure state ψ, there exists the minimal
projector Q(i)

ψ of the form
∑

m P
(i)
jm

such that Pψ ≤ Q(i)
ψ .

The projector Q(i)
ψ represents the ith agent’s knowledge

about the ψ-world. We remark that pψ(Q
(i)
ψ ) = 1.
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Knowing events: quantum representation
Consider the system of projectors P̃ (i) consisting of sums

of the projectors from P (i) :

(11) P̃ (i) = {P =
∑
m

P
(i)
jm
}.

Then

(12) Q
(i)
ψ = min{P ∈ P̃ (i) : Pψ ≤ P}.

Definition. For the ψ-state of the world and the event E,
the ith agent knowns E if

(13) Q
(i)
ψ ≤ E.
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Common knowledge: quantum representation
We use the standard definition of common knowledge.
We recall that in the classical case, for each event E, there

is considered the set of all states of the world for which E
is common knowledge. It is denoted by the symbol κE.
This definition is naturally generalized to the quantum

case. It can be proven that the set κE of quantum states of
the world is a linear subspace of the state space H. Hence,
we can define the projector on it; it is denoted by the same
symbol.
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Similar to the set-theoretic framework, we introduce the
system of projectors P̃ = ∩iP̃ (i).We remark that (by definition)
a projector P ∈ P̃ if and only if, for each i = 1, ..., N, it
can be represented in the form

(14) P =
∑
m

P
(i)
jm
.

Lemma 1. If κE 6= 0, then, for any agent i, it can be
represented as the sum of orthogonal projectors:

(15) κE =
∑
m

P
(i)
jm
.
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Quantum state update: projection postulate
There are given a state ρ and an observable A =

∑
i aiPi. Then

(16) pρ(ai) = TrρPi.

However, if after measurement of theA-observable one plans to perform
measurement of another observable B =

∑
i biP

′
i ), then one needs

to know even the output state:

(17) ρai =
PiρPi

TrPiρPi

.

This nothing else than the quantum version of the classical rule
for probability update. But here we update not the prior probability,
but the prior state.
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For the B-measurement following the A-measurement, this state
plays the same role as the state ρ played for the A-measurement. In
particular, by applying the Born rule once again we obtain:

(18) pρai(bj) = TrρaiP
′
j =

TrPiρPiP
′
j

TrPiρPi

.

In quantum theory this probability is treated as the conditional probability
pρ(P

′
j |Pi) ≡ pρ(B = bj|A = ai).
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Quantum(-like) viewpoint on the Aumann’s theorem
Common prior assumption
Suppose now that both agents assign to possible states of

the world the same quantum probability distribution given
by the density operator ρ, a priori state. Thus they do not
know exactly the real state of the world (the latter is always
a pure state) and in general a possible state of the world
appears for them as a mixed quantum state ρ.
Disagree from quantum(-like) interference
Now we repeat classical Aumann’s scheme of (dis)agreement

on disagree. The only difference from the classical case is
that the agents use another (non-Bayesian) rule to update
probabilities.



Dr
af

t
BigBlueL.png

43/49

JJ
II
J
I

Back

Close

Consider some eventE. The agents assign to it probabilities
after conditioning ρ on the answers to their questions (on
their information representations of the world):

(19) qik = pρ(E|P (i)
k ) =

TrP
(i)
k ρP

(i)
k E

TrP
(i)
k ρP

(i)
k

.

Thus qik is the probability which the ith agent would assign
to the event E under condition that she gets the answer a(i)

k

to her question-observable A(i).

For each i, consider the event

Cqi ≡ {qik = qi}

that after observing her result, the ith agent assigned the
value qi (i.e., i observed one of the values a(i)

k leading to the
probability qik = qi).
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We also consider the event

Cq1...qN = {q1k = q1, ..., q1k = qN}

that after observing their results the agents assigned the
values qi ∈ Vi, i = 1, 2, ..., N, to the event E.
Try to repeat the standard proof of the Aumann theorem.

By Lemma 1 the common knowledge projector (for the
event Cq1...qN) can be represented as

κCq1...qN =
∑
j

P
(i)
kj
, i = 1, ..., N.
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For each such P (1)
kj
, .., P

(N)
kj

, we have

(20) pρ(E|P (1)
kj

) = q1, ..., pρ(E|P (N)
kj

) = qN .

Consider now the conditional probability:

pρ(E|κCq1...qN) =
TrκCq1...qNρκCq1...qNE

TrκCq1...qNρκCq1...qN

.
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By using representation given by Lemma 1 we obtain
(21)

pρ(E|κCq1...qN) =
1

TrρκCq1...qN

(∑
j

TrP
(i)
kj
ρP

(i)
kj

E+
∑
j6=m

TrP
(i)
kj
ρP

(i)
km

E
)
.

By using (20) the first (diagonal) sum can be written as

1

TrρκCq1...qN

∑
j

TrP
(i)
kj
ρP

(i)
kj

E

TrρP
(i)
kj

TrρP
(i)
kj

=
qi

TrρκCq1...qN

Tr
∑

ρP
(i)
kj

=
qi

TrρκCq1...qN

Trρ
∑

P
(i)
kj

= qi.

In the absence of the off-diagonal term in (21) we get (cf.
(8)):

(22) pρ(E|κCq1...qN) = qi,

i.e., q1 = ... = qN . This corresponds to the classical case.
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However, in general the off-diagonal term does not vanish
– this is the interference type effect.
Thus agents processing information in the quantum logic framework

can agree on disagree.
Although the probabilities are not equal, it is useful to

know the degree of mismatching between them and the
quantum formalism provides such information in the form
of the interference term.

Theorem 1. Let the assumption of common prior holds. Then:
(23)

qi−qs =
1

TrρκCq1...qN

( ∑
j 6=m

TrP
(i)
kj
ρP

(i)
km

E−
∑
j 6=m

TrP
(s)
kj
ρP

(s)
km

E
)
.
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Sufficient condition for validity of Aumann theorem is that∑
j 6=m

(P
(i)
kj
ρP

(i)
km
− P (s)

kj
ρP

(s)
km

) = 0.

Related to state based commutativity?
Sufficient condition, event based commutativity:∑

j 6=m

(P
(i)
kj
EP

(i)
km
− P (s)

kj
EP

(s)
km

) = 0.



Dr
af

t
BigBlueL.png

49/49

JJ
II
J
I

Back

Close

Список литературы
[1] A. Khrennikov and I. Basieva, Possibility to agree on disagree from quantum

information and decision making. JMP, 62/63, 1-15, 2014.
[2] A. Khrennikov,Quantum version of AumannТs approach to common knowledge:

Sufficient conditions of impossibility to agree on disagree. J. Math. Economics,
60, 89-104 (2015).

[3] R.J. Aumann, Agreeing on disagree. Ann. Statistics 4, 1236-1239 (1976).
[4] K. Binmore and A. Brandenburger, 1988, Common knowledge and Game theory.

ST/ICERD Discussion Paper 88/167, London School of Economics.
[5] J. Birkhoff and J. von Neumann, The logic of quantum mechanics. Annals of Mathematics,

37, N 4, 823-843 (1936).
[6] A. Brandenburger and E. Dekel, Common knowledge with probability 1. J. Math.

Economics 16, 237-245 (1987).
[7] E. Haven and A. Khrennikov, Quantum Social Science, Cambridge, Cambridge Press,

2012.
[8] A. Khrennikov, Ubiquitous quantum structure: from psychology to finances, Springer,

Berlin-Heidelberg-New York, 2010.
[9] M. Asano, A. Khrennikov, M. Ohya, Y. Tanaka, I.Yamato Quantum Adaptivity in Biology:

from Genetics to Cognition. Springer, Heidelberg-Berlin-New York, 2015.
[10] A. Dominiaka, J.-Ph. Lefortb, “Agreeing to disagree” type results under ambiguity. J.

Math. Economics, 61, 119-129 (2015).


