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Mainstream Performance Optimization Algorithms

Mainstream approach to performance modelling

Most of algorithms for performance optimization are based on
very simple models:

» Scheduling algorithms

» Load balancing algorithms

» Data partitioning algorithms
» Task mapping algorithms

They assume the speed of processing element to be constant.



n Performance Optimization Alg

Matrix partitioning

Matrix partitioning problem for parallel matrix multiplication
on heterogeneous platforms*

» Input: constant processor speeds

» Matrices partitioned so that
» Area of the rectangle proportional to the speed
» Volume of communication minimized
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Maths used by algorithms solving this problem do not go
beyond basic arithmetics.

* Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans.
Parallel Distrib. Syst. 2001



Mainstream Performance Optimization Algorithms

Traditional Dynamic Load Balancing Algorithms

A routine has n computational units distributed across p
Processors.
Processor P; has d; units such that n = Z?:l d;
Initially dY = n/p
At each iteration
1. Execution times for this iteration measured and gathered to
root

2. if relative difference between times < €
then no balancing needed

else new distribution is calculated as:
dEFl =n x sk/ P J where speed sf = dk /t;(d¥)

3. new distributions d%‘“ broadcast to all processors and
where necessary data is redistributed accordingly.



Mainstream Performance Optimization Algorithms

Domain decomposition in CFD

Parallel CFD packages such as OpenFOAM use graph/mesh
partitioning libraries for domain decomposition

» MeTiS, Scotch, etc.

» Input - vector of positive constants representing the relative
volume of computation to be performed by each processor

6 /34



Application performance profiles on modern platforms

The Reality: Matrix Multiplication

Functional Performance Models of GPU
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Matrix blocks (b x b)

» g(x) (version 1): naive kernel

» g(x) (version 2): accumulate intermediate result +
out-of-core

» g(x) (version 3): version 2 + overlap data transfers and
kernel executions )



Application performance profiles on modern platforms

The Reality: Matrix Multiplication

Experimental results for Grid’5000 nodes

Performance models for nodes from Grid5000 Grenoble
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Application performance profiles on modern platforms

The Reality: Matrix Multiplication

Experimental results for Netlib BLAS dgemm*

Netlib Blas Speed Function

T j T T T T T .
I true speed function --------
5F Akima spline interpolation

Speed (GFLOPS)
w
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size of problem

* Rychkov, V. et al: Using Multidimensional Solvers for Optimal Data Partitioning on
Dedicated Heterogeneous HPC Platforms. PaCT’ 2011
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Application performance profiles on modern platforms

The Reality: Computational Fluid Dynamics

Speed functions of the CG solver built in different configurations
on an Adonis node (GFlops against the number of control
volumes)




Application performance profiles on modern platforms

The Reality: Computational Fluid Dynamics

Experimental results for MPDATA on Intel Xeon Phi
(domain size 120 x m x 128)
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Application performance profiles on modern platforms

The Reality: Computational Fluid Dynamics

Experimental results for MPDATA on Intel Xeon Phi
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Application performance profiles on modern platforms

The Reality: Computational Fluid Dynamics

More experimental results for MPDATA on Intel Xeon Phi: the
impact of resource sharing
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Application performance profiles on modern platforms

The Reality: Matrix Multiplication

The impact of resource sharing: the speed of a CPU core built
in different configurations

> Sl(X), SG(X), 812(X), SG(GX)/G, 812(12X)/12




Challenges and Benefits of Accepting Reality Depemmmemie] [Hasmmlis

Straightforward dynamic load balancing may not balance

Real Speed Functions
5,(d)

s,(d)

Absolute
speed

Size of the problem

* Clarke, D. et al: Dynamic Load Balancing of Parallel Computational Iterative Routines
on Highly Heterogeneous HPC Platforms. Parallel Processing Letters, 2011



Experimental Results

Challenges and Benefits of Accepting Reality

Straightforward dynamic load balancing may not balance

Optimum Distribution
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Absolute
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e

Size of the problem

* Clarke, D. et al: Dynamic Load Balancing of Parallel Computational Iterative Routines
on Highly Heterogeneous HPC Platforms. Parallel Processing Letters, 2011



Challenges and Benefits of Accepting Reality Depemmmemie] [Hasmmlis

Straightforward dynamic load balancing may not balance

Initial Distribution
5,(d)
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Size of the problem

* Clarke, D. et al: Dynamic Load Balancing of Parallel Computational Iterative Routines
on Highly Heterogeneous HPC Platforms. Parallel Processing Letters, 2011
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Experimental Results

Challenges and Benefits of Accepting Reality

Straightforward dynamic load balancing may not balance

Actual Performance
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Challenges and Benefits of Accepting Reality
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Experimental Results

Challenges and Benefits of Accepting Reality

Straightforward dynamic load balancing may not balance

Actual Performance
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Challenges and Benefits of Accepting Reality gperimenial Remul

Experimental Results

Iterative Routine
Jacobi method for solving a system of linear equations.

Experimental Setup
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Challenges and Benefits of Accepting Reality Experimental Results

Experimental Results
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Challenges and Benefits of Accepting Reality Experimental Results

Experimental Results

2nd lteration
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Challenges and Benefits of Accepting Reality gperimenial Remulic

Experimental Results
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Challenges and Benefits of Accepting Reality gperimenial Remulic

Experimental Results

4th lteration
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Challenges and Benefits of Accepting Reality Experimental Results

Experimental Results
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Challenges and Benefits of Accepting Reality Experimental Results

Complex but realistic load balancing does always balance

Face the reality and use speed functions instead of constants in
dynamic load balancing.
Challenges:
» Non-trivial partitioning algorithms manipulating by
functions, not numbers.
» Non-trivial technique to build the speed functions suitable
for the algorithms.
Benefits:

» Performance gains.



Challenges and Benefits of Accepting Reality gperimenial Remulic

FPM-based Dynamic Load Balancing Algorithm

» Algorithm is based on models for which speed is a function
of problem size.

» Load balancing achieved when:

dy N do - N dp
si(d1)  s2(de) sp(dp)
where dy +do +---+dp =n




Challenges and Benefi f Accepting Reality gperimenial Remulic

Solving Distribution Problem

» Problem is solved geometrically by noting that the points
(di,si(d;)) lie on a line passing through the origin when

i

sy = constant.

s,(d)

~
d;+dy+rdy+d, =
sy(d) ptdyrd;td,=n

5,(d)

Absolute
speed

s5;(d)

d, d, d, d,
Size of the problem
* Lastovetsky, A. and Reddy, R.: Data Partitioning with a Functional Performance Model
of Heterogeneous Processors. Int. J. of High Perf. Comp. App., 2007
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Challenges and Benefits of Accepting Reality gperimenial Remulic

FPM-based data partitioning algorithm

» Total problem size determines the slope

> Algorithm iteratively bisects solution space to find values d;

S (d)

s(d)

s(d)
Absolute
speed

5(d)

Size of the problem

* Lastovetsky, A. and Reddy, R.: Data Partitioning with a Functional Performance Model

of Heterogeneous Processors. Int. J. of High Perf. Comp. App., 2007



Challenges and Benefi f Accepting Reality

Experimental Results

FPM-based data partitioning algorithm

» Total problem size determines the slope

> Algorithm iteratively bisects solution space to find values d;
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* Lastovetsky, A. and Reddy, R.: Data Partitioning with a Functional Performance Model
of Heterogeneous Processors. Int. J. of High Perf. Comp. App., 2007



Challenges and Benefi f Accepting Reality gperimenial Remulic

FPM-based data partitioning algorithm

» Total problem size determines the slope

> Algorithm iteratively bisects solution space to find values d;
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Challenges and Benefi f Accepting Reality gperimenial Remulic

FPM-based data partitioning algorithm

» Total problem size determines the slope

> Algorithm iteratively bisects solution space to find values d;
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* Lastovetsky, A. and Reddy, R.: Data Partitioning with a Functional Performance Model
of Heterogeneous Processors. Int. J. of High Perf. Comp. App., 2007



Challenges and Benefits of Accepting Reality gperimenial Remulic

Dynamic FPM-based data partitioning

Functional Performance Models may be
built:
» exhaustively in advance

. . * Real Speed Functions
> dynamically at run time o

s,(d)

Absolute
speed

Size of the problem

* Lastovetsky, A. and Reddy, R.: Distributed Data Partitioning for Heterogeneous
Processors Based on Partial Estimation of their Functional Performance Models.

HeteroPar’2009

N
N
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Challenges and Benefits of Accepting Reality

Dynamic FPM-based data partitioning

Functional Performance Models may be
built:
» exhaustively in advance

. . * Optimum Distribution
> dynamically at run time o
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Experimental Results

Challenges and Benefits of Accepting Reality

Dynamic FPM-based data partitioning

Functional Performance Models may be
built:
» exhaustively in advance

. . * Initial Distribution
> dynamically at run time o

s,(d)

Tnitial: point (n/p,s?) with speed
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! ti(l’l/p) speed
first function approximation
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Size of the problem

* Lastovetsky, A. and Reddy, R.: Distributed Data Partitioning for Heterogeneous
Processors Based on Partial Estimation of their Functional Performance Models.
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Experimental Results

Dynamic FPM-based data partitioning

Functional Performance Models may be
built:
» exhaustively in advance

» dynamically at run time*

Tnitial: point (n/p,s?) with speed
0 _ n/p

" 4(n/p)

first function approximation
si(x) =)

Absolute
speed

5,(d)

s,(d)

Predicted Performance

I

s3(d)

s/ (d)

Size of the problem

* Lastovetsky, A. and Reddy, R.: Distributed Data Partitioning for Heterogeneous
Processors Based on Partial Estimation of their Functional Performance Models.

HeteroPar’2009

N
N
w



Challenges and Benefits of Accepting Reality gperimenial Remulic

Dynamic FPM-based data partitioning

Functional Performance Models may be
built:
» exhaustively in advance

Predicted Performance

» dynamically at run time* v
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Challenges and Benefits of Accepting Reality Degperimential Heomlis

Matrix Multiplication on Heterogeneous Platform™

» Input: constant processor speeds

» Matrices partitioned so that
» Area of the rectangle proportional to the speed
» Volume of communication minimized

C nxb A b B
P6 P6 pivot blpck ro;/
P1 P3 L »/\P P3 || b j— &
. P7 | _ P7 | | | P7
b P4 — P4 — P4 —
P8 P8 P8
P2 A P2
PS5 Ipg P> lpg P> lpg

pivot block column

* Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans.
Parallel Distrib. Syst. 2001



Challenges and Benefits of Accepting Reality Degperimential Heomlis

Matrix Multiplication on Het eneous Platform™

» Input: constant processor speeds

» Matrices partitioned so that
» Area of the rectangle proportional to the speed
» Volume of communication minimized

C nxb A b B
P6 P6 pivot blpck ro;/
P1 P3 L »/\P P3 || b j— &
. P7 | _ P7 | | | P7
b P4 — P4 — P4 —
P8 P8 P8
P2 A P2
PS5 Ipg P> lpg P> lpg

pivot block column

» More accurate solution is based on speed functions as
input™*

* Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans.
Parallel Distrib. Syst. 2001

Clarke, D. et al: Column-Based Matrix Partitioning for Parallel Matrix Multiplication
on Heterogeneous Processors Based on Functional Performance Models. In:
HeteroPar-2011, LNCS 7155, 2012
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» Computational kernel: G A By
panel-panel update mixb += I X —
nixb b

» Processor speed -
function of area

4
Lines connect benchmarks of equal area ~ 2.0-10

— 4
Built by running the é ;E ::Z‘
kernel for square s E o
matrices g 02 . .
1:40 1:20 1:1 20:1 40:1 1:1.41:1.2 111 1.2:11.4:4
Ratio m:n Ratio m:n
» FPM-based
partitioning algorithm
finds the optimal areas o1 | P3P
The areas are used as 1P7
input to the matrix . H 8 |
partitioning algorithm PS |po
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Challeng

Matrix multiply on hybrid node: performance modelling

NUMA node 0 NUMA node 1 Tesla 1U

EEE|. e E e
= [ E (z2]

6 X 55(x) 4 X s4(x) 2 X ga(x)
(a)
NUMA node 0 NUMA node 1 Tesla 1U
= = = s |8 pcie 12
switch

Salx) Ss(x) Ga(x)

(b)

Zhong, Z. et al.: Data Partitioning on Multicore and Multi-GPU Platforms Using

*
Functional Performance Models. IEEE Transactions on Computers, 2015
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Matrix multiplication on hybrid node

Experimental platform

CPU (AMD) GPUs (NVIDIA)
Architecture Opteron 8439SE  GF GTX680 Tesla C870
Core Clock 2.8 GHz 1006 MHz 600 MHz
Number of Cores 4 X 6 cores 1536 cores 128 cores
Memory Size 4 x 16 GB 2048 MB 1536 MB
Memory Bandwidth 192.3 GB/s 76.8 GB/s

* Zhong, Z. et al.: Data Partitioning on Multicore and Multi-GPU Platforms Using
Functional Performance Models. IEEE Transactions on Computers, 2015
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Experiments on hybrid multicore multi-GPU node

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40 x 40 99.5 74.2 26.6
50 x 50 195.4 162.7 77.8
60 x 60 300.1 316.8 114.4
70 x 70 491.6 554.8 226.1

Column 1: block size is 640 x 640

Column 2: 4 x 6 CPU cores, homogeneous data partitioning

Column 3: CPU core + GPU

Column 4: 2 x 6 CPU cores + 2 x 5 CPU cores + 2 x ( CPU core + GPU ),
FPM-based data partitioning (12 X sg(x), 10 X 85(x), 2 X g2(x))

* Zhong, Z. et al.: Data Partitioning on Multicore and Multi-GPU Platforms Using
Functional Performance Models. IEEE Transactions on Computers, 2015
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CPM-based partitioning

T T
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FPM-based partitioning
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Matrix size 60 x 60, Computation time reduced by 40%
* Zhong, Z. et al.: Data Partitioning on Multicore and Multi-GPU Platforms Using
Functional Performance Models. IEEE Transactions on Computers, 2015
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Performance with different partitionings

800

I Homogeneous Partltlonlng —»—I
700 CPM-based Partitioning
FPM-based Partitioning ------

600 -
500 -
400 -

300 -

Execution time (sec)

200 -
100

0

10

Matrix size n

Execution time reduced by 23% and 45% respectively
* Zhong, Z. et al.: Data Partitioning on Multicore and Multi-GPU Platforms Using
Functional Performance Models. IEEE Transactions on Computers, 2015
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Performance optimization through load imbalancing

MPDATA can be optimized by imbalancing the load of processors*

1600000

1280000

5 960000 ST0(X) ==
9 ST1(x)——
& ST2(%)
640000
S5T73(x) ——
320000

0 50 100 150 200
Problem size

250 m

* Lastovetsky, A., Shustak, L., Wyrzykowski, R.: Model-based optimization of MPDATA
on Intel Xeon Phi through load imbalancing. arxiv.org preprint, 2015
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Performance optimization through load imbalancing
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Summary

Summary

» Traditional algorithms are easy to design but not accurate.
» FPM-based algorithms are not trivial and require
mathematical skill beyond arithmetics and discrete maths.
» This is a big problem and CS curriculum does not teach
how to apply non-discrete maths in the context of CS. CS
students believe that math analysis is something that only
physicists need.

» [t is not easy to go outside the box but benefits are there..
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