Advances in Computer Modeling of Polymer Systems

Alexei R. Khokhlov

Lomonosov Moscow State University

MSU SUPERCOMPUTER: "LOMONOSOV"

Top500 world rating - #37 (2013.XI).

Top50 Russia rating - #1 (2014.IV).

•Peak performance1.7 PFlops•Linpack performance0.9 PFlops•Main processor typesIntel® Xeon X5570 / X5670 (12 346), NVIDIA X2070 (1 065)•Total area (supercomputer)252 m2•Total equipment weightMore than 75 tons.•Power consumption2.6 MW

Directions of research

- Design of functional polymers
- Self-organising polymer systems
- Nanomaterials: nanocomposites, thermoplasts and thermosets
- Hydrogen energy, fuel cells
- Ultrathin nanostructured films
- Bioinspired molecular hybrids

Methods and Software

Atomistic Methods

Mesoscopic Methods

Field-Based Methods

Quantum-Chemistry Methods

Methods	Software	
Classical Molecular Dynamics	LAMMPS, DL_POLY, NAMD	
Reactive Molecular Dynamics	LAMMPS/ReaxFF	
Dissipative Particle Dynamics (DPD)	Original code	
Reaction DPD	Original code (DPDChem)	
SCFT	Original code	
Density Functional Theory	MesoDyn / Materials Studio	
Quantum molecular dynamics	CP2k, CPMD, Quantum Espresso	
Monte Carlo	Original code	
RISM, MC/RISM, hybrid methods	Original code	

Multiscale modeling concept

Fields

Electrons ۻ Atoms (Particles) ۻ Particles/Fields 🔶

Design of functional copolymers

Biomimetic Design

Bioinspired Globules

Pattern Recognition

Self-organization of polymer nanostructures

Microphase separation: Nanostructure scale: ~10-100 nm

Self-organization of polymer nanostructures

Particles

DPD

SCFT

Field Representation

Design of polymer nanostructures

Synthetic polymers are able to self-organize in sofisticated 3D structures. This opens up opportunities for synthesis of ordered supramolecular nanostructures with controlled morphology.

Polyamphiphiles: Unusual forms of self-organization

Polyamphiphiles phase diagram: Inverted mesophases

Local structure dictates global morphology

Physical Synthesis: nanostructures engineering

"Freezing spinodal decomposition"

Nanoporous materials (membranes, nanofilters...)

SCFT simulation: new developments and results

We have developed a parallel code for largescale field-theoretical SCFT modeling of 3D systems on grids of the order of 1283 or more nodes. The algorithm is based on a pseudospectral method for solving the SCFT-equations and the calculation of integral operators for the matrix fields using the fast Fourier transform and 2D parallelizing ("pencil" decomposition).

For 1024 CPU acceleration >250

Spontaneous break of symmetry: Non-chiral objects are capable to form macroscopic chiral object!

Nanocomposites

Polymerization model (chemical network)

Nanocomposites: Thermosets with filler (project EU/RUS)

Different types of nanoparticles

Deformation mechanics of nanocomposite material

Composites with nanotubes:

3 regimes of elastomer reinforcement:

- 1. L/I ~ 1: small reinforcement
- 2. L/l > 1: main reinforcement regime
- 3. L/l >> 1: saturation after sub-network formation

Soft Matter, 9, 4067, 2013.

Reinforcement mechanism

Presence of 2 sets of subchains: connected (adsorbed or linked) and not connected. Subchains attached to the nanoparticles are more deformed than not attached.

Main reinforcement mechanism: subchains which are not connected to the filler particles are deformed slightly more than in the unfilled matrix + the subchains connected (absorbed) to the filler particles are deformed significantly more.

Macromolecules, 47, 5400, 2014.

Nafion membrane: classical molecular dynamics (record large-scale modeling using LAMMPS program)

Even small water content leads to the proton conductivity

Nafion Membrane: Quantum molecular dynamics (record modeling of ion-conducting channel with the package CP2k)

Charge transfer and Grotthus mechanism

Model of channel

Quantum mol.dynamics (1200 atoms)

Atomistic

structure

We used a hybrid approach within the framewok of the density functional theory (DFT) combining Born-Oppenheimer quantum molecular dynamics (BOMD) and Carr-Parinello method(CPMD)

The observed bimodality of Van Hove spatio-temporal correlation function $G_{c}(r,t)$ gives a first direct evidence of Grotthus mechanism

Fuel cell membrane: finite element method (OCTA multiscale simulation software package)

Atomistic model of the overall PEM FC,

including cathode, anode, and interfaces.

Membranes for low-temperature fuel cells based on new aromatic copolymers (mesoscopic simulation)

Construction of ultrathin nanostructured films

New strategies in microdomain orientation

Double phase separation

Influence of orienting pattern. Effect of pattern multiplication

Bioinspired molecular hybrids

"Molecular chimeras"

... Combining functionalities of biological and synthetic worlds..

Self-organizing bioinspired nanofibers based on oligothiopheneoligopeptide "molecular chimeras"

-[(Thr-Val)3]-

3,3"'-dibihexylquaterthiophene

Helix-like Nanofibrils

Dependence of supramoleclar morphology in fibrils formed by thiophenepeptide diblock oligomers on the intermolecular aggregation pattern

 $\begin{array}{c} Antiparallel \ arrangement \\ of \ \beta \ sheets \end{array}$

Parallel arrangement of β-sheets

Molecular self-organization on surface: Functional layered structures

Electroconductive layer

Peptide backbone

Hypercrosslinked polystyrene

dry

1,2-dichloroethane

Elastic modulus, MPa

Linker/polymer ratio <i>x</i>	CG	Atomistic
0.5	1.35±0.61	3.6±0.4
1.0	6.7±2.4	65±22

Experimental data (V.A. Davankov, M.P.Tsurupa) Dry hypercrosslinked PS:

inner surface up to 1000 m²/g pore size 2-3 nm

Bond and dehydral angles

Specific surface, $10^3 \text{ m}^2/\text{g}$.

Linker/polymer ratio <i>x</i>	CG	Atomistic
0.5	4.6±0.2	4.2±0.2
1.0	3.4±0.2	3.3±0.2

PS swollen in toluene: Elastic modulus 100 -900 MPa

A. A. Lazutin, M. K. Glagolev, V. V. Vasilevskaya, A. R. Khokhlov. Hypercrosslinked polystyrene networks: an atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure. - J.Chem.Phys. 2014, v. 140, n. 13, 134903(1-8)