Numerical solution of hydrodynamic problems
 on adaptive unstructured meshes

Yuri Vassilevski

Institute of Numerical Mathematics
Russian Academy of Sciences, Moscow

Summer Sumerpcomputing Academy MSU June 25, 2015

Variety of unstructured meshes

Tetrahedral meshes

Variety of unstructured meshes

Octree meshes

Variety of unstructured meshes

Triangular prismatic meshes
DB: mesh.gmv
Cycle: 0 Time:0
Mesh
Var: mesh

Variety of unstructured meshes

Meshes with cut-cells (polyhedral meshes)

Types of mesh adaptation

Types of mesh adaptation

Types of mesh adaptation

hierarchical

regular

Types of mesh adaptation

hierarchical

regular

Metric-based control of simplicial meshes

$$
\mathfrak{M}=\mathfrak{M}^{T}>0 \quad \mathfrak{M}=\left[\begin{array}{ll}
M_{x x} & M_{x y} \\
M_{y x} & M_{y y}
\end{array}\right], \quad \mathfrak{M}=\left[\begin{array}{lll}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]
$$

- Area/volume of domain D:
$|D|_{n x}=\int_{D} \sqrt{\operatorname{det}(2 x(x))} d V \approx|D| \sqrt{\operatorname{det}\left(2 x\left(x_{*}\right)\right)}$
- Length of parameterized curve ℓ :

$$
|\ell|_{\mathfrak{N}}=\int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{T} \mathfrak{N}(\gamma(t)) \gamma^{\prime}(t)} d t
$$

Length of parameterized edge $\mathbf{x}=\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)$:

Metric-based control of simplicial meshes

$$
\mathfrak{M}=\mathfrak{M}^{T}>0 \quad \mathfrak{M}=\left[\begin{array}{ll}
M_{x x} & M_{x y} \\
M_{y x} & M_{y y}
\end{array}\right], \quad \mathfrak{M}=\left[\begin{array}{lll}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]
$$

- Area/volume of domain D :

$$
|D|_{\mathfrak{M}}=\int_{D} \sqrt{\operatorname{det}(\mathfrak{M}(\mathbf{x}))} \mathrm{d} V \approx|D| \sqrt{\operatorname{det}\left(\mathfrak{M}\left(\mathbf{x}_{*}\right)\right)}
$$

- Length of parameterized curve ℓ :

Length of parameterized edge $\mathrm{x}=\mathrm{x}_{1}+t\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$:

Metric-based control of simplicial meshes

$$
\mathfrak{M}=\mathfrak{M}^{T}>0 \quad \mathfrak{M}=\left[\begin{array}{ll}
M_{x x} & M_{x y} \\
M_{y x} & M_{y y}
\end{array}\right], \quad \mathfrak{M}=\left[\begin{array}{lll}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]
$$

- Area/volume of domain D :

$$
|D|_{\mathfrak{M}}=\int_{D} \sqrt{\operatorname{det}(\mathfrak{M}(\mathbf{x}))} \mathrm{d} V \approx|D| \sqrt{\operatorname{det}\left(\mathfrak{M}\left(\mathbf{x}_{*}\right)\right)}
$$

- Length of parameterized curve ℓ :

$$
|\ell|_{\mathfrak{M}}=\int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{T} \mathfrak{M}(\gamma(t)) \gamma^{\prime}(t)} \mathrm{d} t
$$

Length of parameterized edge $\mathbf{x}=\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)$:

$$
|\mathbf{e}|_{\mathfrak{M}}=\int_{0}^{1} \sqrt{\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{T} \mathfrak{M}(\gamma(t))\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)} \mathrm{d} t \approx \sqrt{\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T} \mathfrak{M}\left(\mathbf{x}_{12}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)}
$$

Metric-based control of simplicial meshes

$$
\mathfrak{M}=\mathfrak{M}^{T}>0 \quad \mathfrak{M}=\left[\begin{array}{ll}
M_{x x} & M_{x y} \\
M_{y x} & M_{y y}
\end{array}\right], \quad \mathfrak{M}=\left[\begin{array}{lll}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]
$$

- Area/volume of domain D :

$$
|D|_{\mathfrak{M}}=\int_{D} \sqrt{\operatorname{det}(\mathfrak{M}(\mathbf{x}))} \mathrm{d} V \approx|D| \sqrt{\operatorname{det}\left(\mathfrak{M}\left(\mathbf{x}_{*}\right)\right)}
$$

- Length of parameterized curve ℓ :

$$
|\ell|_{\mathfrak{M}}=\int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{T} \mathfrak{M}(\gamma(t)) \gamma^{\prime}(t)} \mathrm{d} t
$$

Length of parameterized edge $\mathbf{x}=\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)$:

$$
|\mathbf{e}|_{\mathfrak{M}}=\int_{0}^{1} \sqrt{\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{T} \mathfrak{M}(\gamma(t))\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)} \mathrm{d} t \approx \sqrt{\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T} \mathfrak{M}\left(\mathbf{x}_{12}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)}
$$

- "Perimeter" of triangle/tetrahedron: $p_{\mathfrak{M}}(\Delta)=\sum_{k=1}^{n_{\text {edges }}}\left|\mathbf{e}_{k}\right|_{\mathfrak{M}}$

Mesh shape quality

Quality of triangle Δ in metric \mathfrak{M} :

$$
Q_{\mathfrak{M}}(\Delta)=12 \sqrt{3} \frac{|\Delta|_{\mathfrak{M}}}{p_{\mathfrak{M}}(\Delta)^{2}}
$$

Mesh shape quality:

$$
Q_{\mathfrak{M}}\left(\Omega_{h}\right)=\min _{\Delta \in \Omega_{h}} Q_{\mathfrak{M}}(\Delta)
$$

Mesh shape quality

Quality of tetrahedron Δ in metric \mathfrak{M} :

$$
Q_{\mathfrak{M}}(\Delta)=6^{4} \sqrt{2} \frac{|\Delta|_{\mathfrak{M}}}{p_{\mathfrak{M}}(\Delta)^{3}}
$$

Mesh shape quality:

$$
Q_{\mathfrak{M}}\left(\Omega_{h}\right)=\min _{\Delta \in \Omega_{h}} Q_{\mathfrak{M}}(\Delta)
$$

Example

$$
\mathfrak{M}=\left[\begin{array}{ll}
5.89 & 2.51 \\
2.51 & 5.01
\end{array}\right], \quad \lambda_{1}=8.0, \quad \lambda_{2}=2.9
$$

\mathfrak{M}-equilateral triangle
height $\alpha=\sqrt{3 \lambda_{2} / 4 \lambda_{1}}$

Control of mesh properties

Given tensor metric field $\mathfrak{M}(\mathbf{x})$ and desirable number of cells N_{\star}, we generate by a sequence of local modifications a \mathfrak{M}-quasiuniform mesh with N_{\star} cells.

- h_{\star} is a mesh size of \mathfrak{M}-quasiuniform mesh with N_{\star} cells:

$$
h_{\star}=\left(\frac{1}{N_{\star} V_{d}} \int_{\Omega} \sqrt{\operatorname{det}(\mathfrak{M}(\mathbf{x}))} d V\right)^{1 / d}
$$

- $F(\cdot)$ is a smooth positive function with the only maximum $F(1)=1$

Mesh quality:

$$
Q\left(\Omega_{h}\right)=\min _{\Delta \in \Omega_{h}} Q(\Delta)
$$

Monotone increase of $Q\left(\Omega_{h}\right)$ by a set of local modifications

Control of mesh properties

Quality of triangle Δ in metric \mathfrak{M} :

$$
\left.Q_{\mathfrak{M}, N_{\star}}(\Delta)=12 \sqrt{3} \frac{\left.\begin{array}{c}
\text { shape } \\
p_{\mathfrak{M}}(\Delta)^{2}
\end{array}\right|_{\mathfrak{M}}}{p_{\text {size }}} \begin{array}{c}
\text { sim }(\Delta) \\
3 h_{\star}
\end{array}\right)
$$

- h_{\star} is a mesh size of \mathfrak{M}-quasiuniform mesh with N_{\star} cells:

$$
h_{\star}=\left(\frac{1}{N_{\star} V_{d}} \int_{\Omega} \sqrt{\operatorname{det}(\mathfrak{M}(\mathbf{x}))} d V\right)^{1 / d} .
$$

- $F(\cdot)$ is a smooth positive function with the only maximum $F(1)=1$

Mesh quality:

$$
Q\left(\Omega_{h}\right)=\min _{\Delta \in \Omega_{h}} Q(\Delta)
$$

Monotone increase of $Q\left(\Omega_{h}\right)$ bv a set of local modifications

Control of mesh properties

Quality of tetrahedron Δ in metric \mathfrak{M} :

$$
Q_{\mathfrak{M}, N_{\star}}(\Delta)=6^{4} \sqrt{2} \frac{\begin{array}{c}
\text { shape } \\
p_{\mathfrak{M}}(\Delta)^{3}
\end{array}}{\frac{\left.\Delta\right|_{\mathfrak{M}}}{\text { size }}} F\left(\frac{p_{\mathfrak{M}}(\Delta)}{6 h_{\star}}\right)
$$

- h_{\star} is a mesh size of \mathfrak{M}-quasiuniform mesh with N_{\star} cells:

$$
h_{\star}=\left(\frac{1}{N_{\star} V_{d}} \int_{\Omega} \sqrt{\operatorname{det}(\mathfrak{M}(\mathbf{x}))} d V\right)^{1 / d}
$$

- $F(\cdot)$ is a smooth positive function with the only maximum $F(1)=1$

Mesh quality:

$$
Q\left(\Omega_{h}\right)=\min _{\Delta \in \Omega_{h}} Q(\Delta)
$$

Monotone increase of $O\left(\Omega_{h}\right)$ bv a set of local modifications

Local topological operations in 2D

Op 1: point insertion

Op 2: point deletion

Op 3: point relocation

Local topological operations in 2D

Op 4: edge swap

Op 5: edge collapsing

Locality is the key to robustness, rich set of operations provides faster convergence

Examples of mesh control

Choice of \mathfrak{M}

$h(\mathbf{x})^{-2} \mathbb{I}_{2}$

$$
\begin{array}{r}
\max \left\{\left|(x-0.4)^{2}+(y-0.5)^{2}+10^{-4}\right|^{a / 2}\right. \\
\left.\quad\left|(x-0.6)^{2}+(y-0.5)^{2}+10^{-4}\right|^{a / 2}\right\}
\end{array}
$$

$\mathbb{R}_{\pi / 4}\left[\begin{array}{cc}100 & 0 \\ 0 & 1\end{array}\right] \mathbb{R}_{\pi / 4}^{T}$

Example of metric-based adaptation loop

 Initialization Step. Generate an initial triangulation Ω^{h}. Choose the final mesh quality $Q_{0}, Q_{0}<1$, and the final number N_{\star} of mesh elements.Iterative Step.
(1) Compute the discrete solution $\mathcal{P}_{\Omega^{h}} u$ for triangulation Ω^{h}.
(2) Recover the tensor metric field \mathfrak{M} from $\mathcal{P}_{\Omega^{h}} u$. Stop iterations if $Q_{M, N_{\star}}\left(\Omega^{h}\right) \geq Q_{0}$.
(3) Generate the next mesh $\widetilde{\Omega}^{h}$ such that $Q_{\Re, N_{*}}\left(\widetilde{\Omega}^{h}\right) \geq Q_{0}$.
(9) Set $\Omega^{h}=\widetilde{\Omega}^{h}$ and go to 1 .

Approaches to recovery of \mathfrak{M}

- Recover discrete Hessian

+ black-box
- lack of analysis, error control
- Use a posteriori error estimates
- problem dependent
+ theory and error estimates exist

Approaches to recovery of \mathfrak{M}

- Recover discrete Hessian
+ black-box
- lack of analysis, error control
- Use a posteriori error estimates
- problem dependent
+ theory and error estimates exist

Approaches to recovery of \mathfrak{M}

- Recover discrete Hessian
+ black-box
- lack of analysis, error control
- Use a posteriori error estimates
- problem dependent
+ theory and error estimates exist

Metric and Hessian

If the adaptation goal is to minimize P_{1}-interpolation error

$$
\left\|u-\mathcal{P}_{\Omega^{h}} u\right\|_{L_{p}(\Omega)}, \quad 0<p \leq \infty
$$

take

$$
\mathfrak{M}(x)=(\operatorname{det}|H(x)|)^{-1 /(2 p+2)}|H(x)|
$$

where H is the Hessian of u.

- |H|= $W^{T}|\Lambda| W$ from local spectral decomposition $H=W^{T} \wedge W$.
- u is unknown, hence H is replaced with H^{h}. Then $\mathfrak{M} \leftarrow\left|H^{h}\right|$.

Variational recovery of Hessian

Weak definition of the Hessian

$$
\int_{\sigma} H_{i j}^{h}(a) \phi_{a}^{h} \mathrm{~d} x=-\int_{\sigma} \frac{\partial u^{h}}{\partial x_{i}} \frac{\partial \phi_{a}^{h}}{\partial x_{j}} \mathrm{~d} x
$$

a interior point $\phi_{a}^{h}(a)$ is P_{1}-basis function for a.

Cell-based metric recovery from edge data α_{k}

Geometric control of edge-based errors

$$
\alpha_{k} \quad \Rightarrow \quad \mathfrak{M}=\left[\begin{array}{ll}
\mathfrak{m}_{11} & \mathfrak{m}_{12} \\
\mathfrak{m}_{12} & \mathfrak{m}_{22}
\end{array}\right] ?
$$

Cell-based metric recovery from edge data α_{k}
Geometric control of edge-based errors

$$
\alpha_{k} \quad \Rightarrow \quad \mathfrak{M}=\left[\begin{array}{ll}
\mathfrak{m}_{11} & \mathfrak{m}_{12} \\
\mathfrak{m}_{12} & \mathfrak{m}_{22}
\end{array}\right] ?
$$

Define quadratic (bubble) function $b_{k}(x)=\lambda_{i}(x) \lambda_{j}(x)$
Consider $v_{2}=-\sum_{k=1}^{\# \text { edges }} \alpha_{k} b_{k}$ and set $\mathfrak{M}=\left|H\left(v_{2}\right)\right|$, if $\operatorname{det} H\left(v_{2}\right) \neq 0$.
\#edges

Otherwise, consider $\hat{v}_{2}=-\sum_{k=1} \hat{\alpha}_{k} b_{k}$, where $\hat{\alpha}_{\max }=(1+\delta) \alpha_{\text {max }}$

Cell-based metric recovery from edge data α_{k}

Geometric control of edge-based errors

Theorem. Let α_{k} be the errors prescribed to edges of a triangle Δ such that

$$
\alpha_{k} \geq 0 \quad \text { and } \quad \sum_{k=1}^{\# e d g e s} \alpha_{k}>0
$$

Then, there exists a constant tensor metric \mathfrak{M} such that

$$
0.4|\Delta|_{\mathfrak{M}} \leq \sum_{k=1}^{\# e d g e s} \alpha_{k} \leq p_{\mathfrak{M}}(\Delta)^{2}
$$

similar result in 3D
A. Agouzal, Yu. Vassilevski. Minimization of gradient errors of piecewise linear interpolation on simplicial meshes. Comp.Meth. Appl.Mech.Engnr., 2010, V.199, p.2195-2203.

Fundamental principle of mesh adaptation

Minimal error is provided by meshes Ω^{h} where elemental errors $\left\|u-u_{h}\right\|_{\Delta}$ are equidistributed

Fundamental principle of mesh adaptation

 But error $u-u_{h}$ is unknown, since u is unknown.Assume that we have reliable and efficient a posteriori error estimates η_{Δ}

$$
c_{1} \eta_{\Delta} \leq\left\|u-u_{h}\right\|_{\Delta} \leq c_{2} \eta_{\Delta}
$$

Fundamental principle of mesh adaptation

Approximate error minimization is provided by meshes Ω^{h}
where elemental error estimates η_{Δ} are equidistributed

Fundamental principle of mesh adaptation

Approximate error minimization is provided by meshes Ω^{h}
where elemental error estimates η_{Δ} are equidistributed

Important issues:

- Find η_{Δ} s.t. $c_{2} \approx c_{1} \approx 1$ in

- How to equidistribute η_{Δ} ?

Fundamental principle of mesh adaptation

Approximate error minimization is provided by meshes Ω^{h}
where elemental error estimates η_{Δ} are equidistributed

Important issues:

- Find η_{Δ} s.t. $c_{2} \approx c_{1} \approx 1$ in
$c_{1} \eta_{\Delta} \leq\left\|u-u_{h}\right\|_{\Delta} \leq c_{2} \eta_{\Delta}$
- How to equidistribute η_{\triangle} ?

Fundamental principle of mesh adaptation

Approximate error minimization is provided by meshes Ω^{h}
where elemental error estimates η_{Δ} are equidistributed

Important issues:

- Find η_{Δ} s.t. $c_{2} \approx c_{1} \approx 1$ in $c_{1} \eta_{\Delta} \leq\left\|u-u_{h}\right\|_{\Delta} \leq c_{2} \eta_{\Delta}$
- How to equidistribute η_{Δ} ?

Adaptive algorithm with metric control and aposteriori error estimates

1: Generate an initial mesh Ω^{h}, solve the problem, estimate the error, and compute a piecewise constant metric $\left\{\mathfrak{M}_{\Delta}\right\}_{\Delta \in \Omega^{h}}$.

2: loop
3: \quad Generate a \mathfrak{M}-quasiuniform mesh Ω^{h}.
4: Solve the problem, estimate the error, and compute a new metric $\left\{\mathfrak{M}_{\Delta}\right\}_{\Delta \in \Omega^{h}}$.

5: If Ω^{h} is \mathfrak{M}-quasiuniform, then exit.
6: end loop

Error equidistribution by metric control

Error of piecewise linear interpolation

Error equidistribution by metric control

Error of piecewise linear interpolation

$$
\begin{aligned}
& e_{2}=u_{2}-\mathcal{I} u_{2} \\
& \text { \#edges } \\
& =\sum_{k=1}\left(u_{2}-\mathcal{I} u_{2}\right)\left(c_{k}\right) b_{k} \\
& \text { \#edges } \\
& \equiv \sum_{k=1} \gamma_{k} b_{k} \text {, } \\
& \nabla e_{2}=\sum_{k=1}^{\# e d g e s} \gamma_{k} \nabla b_{k}
\end{aligned}
$$

Error equidistribution by metric control

Error of piecewise linear interpolation

$$
\begin{aligned}
e_{2} & =\sum_{k=1}^{u_{2}-\mathcal{I} u_{2}}\left(u_{2}-\mathcal{I} u_{2}\right)\left(c_{k}\right) b_{k} \\
& =\sum_{k=1}^{\# e d g e s} \gamma_{k} b_{k} \\
& \equiv \sum_{k=1}^{\# e d g e s} \\
& \left\|e_{2}=\sum_{k}^{\# e d g e s}\right\|_{2} \nabla b_{k} \\
\mathbb{B}_{k, I} & =\frac{1}{|\Delta|} \int_{\Delta} \nabla b_{k} \cdot \nabla b_{l} \mathrm{~d} x
\end{aligned}
$$

Bounds on gradient of error

Error of piecewise linear interpolation
We split $\left\|\nabla e_{2}\right\|_{2}$ into $\#$ edges edge-based error estimates $\alpha_{k} \geq 0$

$$
\left\|\nabla e_{2}\right\|_{2}=|\Delta|^{\frac{1}{2}} \sum_{k=1}^{\text {\#edges }} \alpha_{k} \text { and } \sum_{k=1}^{\text {\#edges }} \alpha_{k}=(\mathbb{B} \gamma, \gamma)^{\frac{1}{2}}
$$

Bounds on gradient of error

Error of piecewise linear interpolation
We split $\left\|\nabla e_{2}\right\|_{2}$ into $\#$ edges edge-based error estimates $\alpha_{k} \geq 0$

$$
\left\|\nabla e_{2}\right\|_{2}=|\Delta|^{\frac{1}{2}} \sum_{k=1}^{\# \text { edges }} \alpha_{k} \text { and } \sum_{k=1}^{\# e d g e s} \alpha_{k}=(\mathbb{B} \gamma, \gamma)^{\frac{1}{2}}
$$

We choose

$$
\alpha_{k}=\left|\gamma_{k}\right|(\mathbb{B} \gamma, \gamma)^{\frac{1}{2}}\left(\sum_{k=1}^{\# e d g e s}\left|\gamma_{k}\right|\right)^{-1}
$$

since $\alpha_{k}=C\left|\gamma_{k}\right|$ equidistributes $\left\|e_{2}\right\|_{L \infty}$ over all edges of Δ.

Bounds on gradient of error

Error of piecewise linear interpolation
We split $\left\|\nabla e_{2}\right\|_{2}$ into $\#$ edges edge-based error estimates $\alpha_{k} \geq 0$

$$
\left\|\nabla e_{2}\right\|_{2}=|\Delta|^{\frac{1}{2}} \sum_{k=1}^{\# e d g e s} \alpha_{k} \text { and } \sum_{k=1}^{\# e d g e s} \alpha_{k}=(\mathbb{B} \gamma, \gamma)^{\frac{1}{2}}
$$

We choose

$$
\alpha_{k}=\left|\gamma_{k}\right|(\mathbb{B} \gamma, \gamma)^{\frac{1}{2}}\left(\sum_{k=1}^{\# \text { edges }}\left|\gamma_{k}\right|\right)^{-1}
$$

since $\alpha_{k}=C\left|\gamma_{k}\right|$ equidistributes $\left\|e_{2}\right\|_{L \infty}$ over all edges of Δ.

$$
\begin{aligned}
\widetilde{\mathfrak{M}} & =\operatorname{det}(\mathfrak{M})^{-1 / 4} \mathfrak{M} \\
c_{1}|\Delta|_{\tilde{\mathfrak{M}}}|\Delta|_{\tilde{\mathfrak{M}}} & \leq\left\|\nabla e_{2}\right\|_{2}^{2} \leq c_{2}|\Delta|_{\tilde{\mathfrak{M}}}|\partial \Delta|_{\tilde{\mathfrak{M}}}^{2}
\end{aligned}
$$

Bounds on gradient of error

Error of piecewise linear interpolation
We split $\left\|\nabla e_{2}\right\|_{2}$ into $\#$ edges edge-based error estimates $\alpha_{k} \geq 0$

$$
\left\|\nabla e_{2}\right\|_{2}=|\Delta|^{\frac{1}{2}} \sum_{k=1}^{\# \text { edges }} \alpha_{k} \text { and } \sum_{k=1}^{\# \text { edges }} \alpha_{k}=(\mathbb{B} \gamma, \gamma)^{\frac{1}{2}}
$$

We choose

$$
\alpha_{k}=\left|\gamma_{k}\right|(\mathbb{B} \gamma, \gamma)^{\frac{1}{2}}\left(\sum_{k=1}^{\# e d g e s}\left|\gamma_{k}\right|\right)^{-1}
$$

since $\alpha_{k}=C\left|\gamma_{k}\right|$ equidistributes $\left\|e_{2}\right\|_{L^{\infty}}$ over all edges of Δ.

$$
\begin{aligned}
& \widetilde{\mathfrak{M}}=\operatorname{det}(\mathfrak{M})^{-1 / 4} \mathfrak{M} \\
& c_{1}|\Delta|_{\tilde{\mathfrak{M}}}|\Delta|_{\tilde{\mathfrak{M}}} \leq\left\|\nabla e_{2}\right\|_{2}^{2} \leq c_{2}|\Delta|_{\tilde{\mathfrak{M}}}|\partial \Delta|_{\tilde{\mathfrak{M}}}^{2}
\end{aligned}
$$

$\widetilde{\mathfrak{M}}$-quasiuniform mesh equidistributes $\|\nabla e\|_{2}$ and is quasi-optimal mesh

A posteriori error equidistribution by metric control
Hierarchical error estimate for P_{1} FEM solution

Let u_{h}^{*} be a P_{1} finite element solution of a second-order PDE.

Let U_{L}^{*} be the vector of degrees of freedom corresponding to nodal basis functions λ_{i}^{h} :

$$
u_{h}^{*}=\sum_{\text {vertices }} U_{L, i}^{*} \lambda_{i}^{h}
$$

The FE method results in the algebraic problem

$$
A_{L L} U_{L}^{*}=F_{L}
$$

A posteriori error equidistribution by metric control

Hierarchical error estimate for P_{1} FEM solution

$$
A_{L L} U_{L}^{*}=F_{L}
$$

To estimate the discretization error associated with the solution u_{h}^{*}, we enrich the FE basis by quadratic (bubble) functions on mesh edges:

$$
\begin{aligned}
u_{h}=\sum_{\text {vertices }} U_{L, i} \lambda_{i}^{h}+\sum_{\text {edges }} U_{Q, k} b_{k}^{h} & =u_{h}^{*}+d_{h} \\
d_{h} & =\sum_{\text {vertices }} D_{L, i} \lambda_{i}^{h}+\sum_{\text {edges }} D_{Q, k} b_{k}^{h} .
\end{aligned}
$$

The FE method gives a larger algebraic problem for a vector $\left(U_{L}, U_{Q}\right)$.
It is convenient to write it down for the correction vector $\left(D_{L}, D_{Q}\right)$:

$$
\left[\begin{array}{ll}
A_{L L} & A_{L Q} \\
A_{Q L} & A_{Q Q}
\end{array}\right]\left[\begin{array}{c}
D_{L} \\
D_{Q}
\end{array}\right]=\left[\begin{array}{c}
R_{L} \\
R_{Q}
\end{array}\right], \quad \begin{gathered}
R_{L}=F_{L}-A_{L L} U_{L}^{*} \\
R_{Q}=F_{Q} \equiv A_{Q L} U_{L \equiv}^{*}
\end{gathered}
$$

A posteriori error equidistribution by metric control

Hierarchical error estimate for P_{1} FEM solution

The theory estimates the error as

$$
\eta_{\Delta}:=\left\|\nabla d_{h, Q}\right\|_{L^{2}(\Delta)}=\left\|\sum_{k=1}^{\# e d g e s}\left(D_{Q, k} \nabla b_{k}\right)\right\|_{L^{2}(\Delta)} .
$$

This estimate gives one number for triangle Δ. However, the coefficients in front of the bubble functions can be used to extract the directional information. We define α_{k} to be proportional to $D_{Q, k}$:

$$
\alpha_{k}=\frac{\left|D_{Q, k}\right|}{\sum_{k=1}^{\# e d g e s}\left|D_{Q, k}\right|} \eta_{\Delta}
$$

Using these α_{k}, we constuct a constant metric $\widetilde{\mathfrak{M}}_{\Delta}$ in Δ.

Diffusion problem with isotropic solution

 Let Ω be a unit disk with a radial cut. We consider the classical crack problem with the exact solution$$
u(r, \theta)=r^{1 / 4} \sin (\theta / 4), \quad \theta \in[0,2 \pi)
$$

We consider the following boundary value problem:

$$
\begin{aligned}
\Delta u & =0 & & \text { in } \quad \Omega \backslash S \\
u & =\sin (\theta / 4) & & \text { on } \quad \partial \Omega \backslash S \\
u & =0 & & \text { on } S^{+} \\
\frac{\partial u}{\partial n} & =0 & & \text { on } S^{-}
\end{aligned}
$$

Diffusion problem with isotropic solution

The adaptive mesh is isotropic. The error reduction is proportional to

$$
N_{T}^{-1 / 2}
$$

which is the theoretically predicted optimal estimate.

Diffusion problem with isotropic solution

The adaptive mesh is isotropic. The error reduction is proportional to

$$
N_{T}^{-1 / 2}
$$

which is the theoretically predicted optimal estimate.

Diffusion problem with anisotropic solution

Let Ω be a square $(-1,1)^{2}$. We consider the boundary value problem with the exact solution

$$
u(x, y)=y x^{2}+y^{3}+\tanh (6(\sin (5 y)-2 x)) .
$$

$$
\left.\begin{array}{rlrl}
-\operatorname{div}(K \nabla u) & =f & \text { in } \Omega \\
u & =u_{0} & \text { on } \partial \Omega
\end{array}\right] .
$$

Diffusion problem with anisotropic solution

$\frac{N_{T}}{* / K^{\frac{1}{2}} \nabla d_{h, Q}\left\|_{L^{2}(\Omega)}\right\| K^{\frac{1}{2}} \nabla e \|_{L^{2}(\Omega)}} 8$

The adaptive mesh is anisotropic, $\max _{\Delta} R_{\Delta} / r_{\Delta}=7600$.
The error reduction is proportional to

$$
N_{T}^{-1 / 2}
$$

which is the optimal estimate.

Diffusion problem with anisotropic solution

	N_{T}	$\left\\|K^{\frac{1}{2}} \nabla d_{h, Q}\right\\|_{L^{2}(\Omega)}$	$\left\\|K^{\frac{1}{2}} \nabla e\right\\|_{L^{2}(\Omega)}$
\cdots	1000	8.21e-1	8.03e-1
*	4000	$4.16 \mathrm{e}-1$	3.77e-1
U + +	16000	$2.07 \mathrm{e}-1$	1.87e-1
	64000	$1.29 \mathrm{e}-1$	$9.44 \mathrm{e}-2$
男	rate	0.45	0.51

The adaptive mesh is anisotropic, $\max _{\Delta} R_{\Delta} / r_{\Delta}=7600$.
The error reduction is proportional to

$$
N_{T}^{-1 / 2}
$$

which is the optimal estimate.

Diffusion problem with anisotropic solution

	N_{T}	$\left\\|K^{\frac{1}{2}} \nabla d_{h, Q}\right\\|_{L^{2}(\Omega)}$	$K^{\frac{1}{2}} \nabla e \\|_{L^{2}(\Omega)}$
	1000	8.21e-1	8.03e-1
	4000	$4.16 \mathrm{e}-1$	$3.77 \mathrm{e}-1$
N	16000	$2.07 \mathrm{e}-1$	1.87e-1
N-wn	64000	$1.29 \mathrm{e}-1$	$9.44 \mathrm{e}-2$
$\rightarrow-15$	rate	0.45	0.51

The adaptive mesh is anisotropic, $\max _{\Delta} R_{\Delta} / r_{\Delta}=7600$.
The error reduction is proportional to

$$
N_{T}^{-1 / 2}
$$

which is the optimal estimate.

Navier-Stokes equations

Let Ω be a square $(0,1)^{2}$. We consider the Navier-Stokes equations with the exact solution $(\mathbf{u}, p), \mathbf{u}=(v, w)$ (Berrone, 2001)

$$
\begin{aligned}
& v(x, y)=\left(1-\cos \left(\frac{2 \pi\left(e^{R_{1} x}-1\right)}{e^{R_{1}}-1}\right)\right) \sin \left(\frac{2 \pi\left(e^{R_{2} y}-1\right)}{e^{R_{2}}-1}\right) \frac{R_{2}}{2 \pi} \frac{e^{R_{2} y}}{\left(e^{R_{2}}-1\right)} \\
& w(x, y)=-\sin \left(\frac{2 \pi\left(e^{R_{1} x}-1\right)}{e^{R_{1}}-1}\right)\left(1-\cos \left(\frac{2 \pi\left(e^{R_{2} y}-1\right)}{e^{R_{2}}-1}\right)\right) \frac{R_{1}}{2 \pi} \frac{e^{R_{1} x}}{\left(e^{R_{1}}-1\right)} \\
& p(x, y)=\sin \left(\frac{2 \pi\left(e^{R_{1} x}-1\right)}{e^{R_{1}}-1}\right) \sin \left(\frac{2 \pi\left(e^{R_{2} y}-1\right)}{e^{R_{2}}-1}\right) R_{1} R_{2} \frac{e^{R_{1} \times} e^{R_{2 y}}}{\left(e^{R_{1} x}-1\right)\left(e^{R_{2} y}-1\right)}
\end{aligned}
$$

where $R_{1}=4.2985, R_{2}=0.1$
u represents a counterclockwise vortex

$$
\begin{aligned}
-0.1 \Delta \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p & =\mathbf{f} & & \text { in } \Omega, \\
\operatorname{div} \mathbf{u} & =0 & & \text { in } \Omega, \\
\mathbf{u} & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Navier-Stokes equations

Hood-Taylor $P_{2}-P_{1}$ FEM

$$
\begin{gathered}
\gamma_{k}^{(1)}=\left(v_{h}-\mathcal{I}_{1} v_{h}\right)\left(c_{k}\right), \quad \gamma_{k}^{(2)}=\left(w_{h}-\mathcal{I}_{1} w_{h}\right)\left(c_{k}\right) \\
\alpha_{k}=\left(\left|\gamma_{k}^{(1)}\right|+\left|\gamma_{k}^{(2)}\right|\right)\left(\left(\mathbb{B} \gamma^{(1)}, \gamma^{(1)}\right)+\left(\mathbb{B} \gamma^{(2)}, \gamma^{(2)}\right)\right)\left(\sum_{k=1}^{3}\left|\gamma_{k}^{(1)}\right|+\left|\gamma_{k}^{(2)}\right|\right)^{-1}
\end{gathered}
$$

	$\tilde{E}(\mathbf{u})$	$E(\mathbf{u})$
1000	$3.3 \mathrm{e}-1$	$7.2 \mathrm{e}-2$
$1.6 \mathrm{e}-1$	$2.1 \mathrm{e}-2$	
4000	$6.1 \mathrm{e}-3$	
16000	$8.1 \mathrm{e}-2$	$1.7 \mathrm{e}-3$
64000	$4.0 \mathrm{e}-2$	0.9

$$
\tilde{E}(\mathbf{u})=\left(\left\|\nabla\left(\mathcal{I}_{1} v_{h}-v\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla\left(\mathcal{I}_{1} w_{h}-w\right)\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

Reduction of $\tilde{E}(\mathbf{u})$ is proportional to $N_{T}^{-1 / 2}$

Navier-Stokes equations

Hood-Taylor $P_{2}-P_{1}$ FEM

$$
\gamma_{k}^{(1)}=\left(v_{h}-\mathcal{I}_{1} v_{h}\right)\left(c_{k}\right), \quad \gamma_{k}^{(2)}=\left(w_{h}-\mathcal{I}_{1} w_{h}\right)\left(c_{k}\right)
$$

$$
\alpha_{k}=\left(\left|\gamma_{k}^{(1)}\right|+\left|\gamma_{k}^{(2)}\right|\right)\left(\left(\mathbb{B} \gamma^{(1)}, \gamma^{(1)}\right)+\left(\mathbb{B} \gamma^{(2)}, \gamma^{(2)}\right)\right)\left(\sum_{k=1}^{3}\left|\gamma_{k}^{(1)}\right|+\left|\gamma_{k}^{(2)}\right|\right)^{-1}
$$

N_{T}	$\tilde{E}(\mathbf{u})$	$E(\mathbf{u})$
1000	$3.3 \mathrm{e}-1$	$7.2 \mathrm{e}-2$

4000	$1.6 \mathrm{e}-1$	$2.1 \mathrm{e}-2$
16000	$8.1 \mathrm{e}-2$	$6.1 \mathrm{e}-3$
64000	$4.0 \mathrm{e}-2$	$1.7 \mathrm{e}-3$
rate	0.5	0.9

$$
E(\mathbf{u})=\left(\left\|\nabla\left(v_{h}-v\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla\left(w_{h}-w\right)\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

(!) Reduction of $E(\mathbf{u})$ is proportional to N_{T}^{-1}

Advanced numerical instruments Ani\#D

Ani2D

www.sf.net/projects/ani2d
6300 downloads

Ani3D

www.sf.net/projects/ani3d
4000 downloads

Advanced Numerical Instruments, Ani2D

Open source software for FEM solution of BVPs on triangulations
Ani2D is a set of independent libraries for

- mesh generation
- mesh adaptation (hierarchical or metric-based, isotropic or anisotropic)
- FEM discretization of 2nd order PDEs
- solution of algebraic systems (linear and nonlinear)
- visualization of mesh and FEM solution

Advanced Numerical Instruments, Ani2D

Open source software for FEM solution of BVPs on triangulations
Ani2D is a set of independent libraries for

- mesh generation
- mesh adaptation (hierarchical or metric-based, isotropic or anisotropic)
- FEM discretization of 2nd order PDEs
- solution of algebraic systems (linear and nonlinear)
- visualization of mesh and FEM solution

The libraries may be combined to solve complex problems. The libraries can be included easily in other packages.

Ani2D is released under the GNU GPL Licence, tested under Linux, Unix, Windows.

Ani2D developers

Principal developers:

- Konstantin Lipnikov (LANL)
- Yuri Vassilevski (INM RAS)

Developers:

- Alexander Danilov (INM RAS)
- Vadim Chugunov (INM RAS)
- Sergei Goreinov (INM RAS)
- Alexey Chernyshenko (INM RAS)

Meshing package aniAFT (Advancing Front Technique) Analytical representation of boundary

! complement of a wing NACA0012 to the unit square double precision bv $(2,7)$, $\operatorname{bltail}(2,8)$ integer Nbv, Nbl, bl$(7,8)$
! numbers of boundary nodes and boundary edges
data Nbv/7/, Nbl/8/
! boundary nodes
data bv/0,0, $0,1,1,1,1,0, .4, .5, .6, .5,1, .5 /$
! outer boundary edges
data $\mathrm{bl} / 1,2,0,-1,-1,1,0,4,1,0,-1,-1,1,0$,
\& 2,3,0,-1,1,1,0, 7,4,0,-1,1,1,0,
\& 3,7,0,-1,1,1,0, 6,7,2,0,11,1,1, \& 6,5,1,-1,2,1,0, 5,6,1,-1,2,1,0/
! curved data for each outer boundary edge data bltail/ $0,0,0,0,0,0,0,0,0,0,0,1,0, .5, .5,1 /$
external userboundary
call registeruserfn(userboundary)
ierr $=$ aft2dboundary(Nbv, bv, Nbl, bl, bltail, h,
nv, vrt, nt, tri, labelT, nb, bnd, labelB, nc, crv, iFNC)

Meshing package aniAFT (Advancing Front Technique)

Grid representation of boundary

518518 number of vertices and edges
0.0 .064933 coordinates of vertices
0.0022930 .059187
0.0074670 .055733
0.010920 .050573
0.6488530 .1954

34 connectivity list for edges
45
56
235236
ierr $=$ aft2dfront(Nbr, brd, Nvr, vbr, nv, vrt, nt, tri, labelT, nb, bnd, labelB)

Meshing package aniAFT (Advancing Front Technique)

Mesh size control

- generate quasi-uniform mesh with meshstep h :
$\mathrm{h}=0.02$
ierr $=$ aft2dboundary(Nbv, bv, Nbl, bl, bltail, h, ...
- user's meshsize function:
external usermeshsize
call registersizefn(usermeshsize)
- no control (mesh size geometric coarsening)

Refining/Coarsening by Bisection, aniRCB

Hierarchical local refinement

Subroutine RefineRule (nt, tri, vrt, verf, ilevel)
! refine towards the diagonal $\mathrm{y}=\mathrm{x}$ Do $\mathrm{i}=1$, nt
! at least one vertex belongs to $\mathrm{y}=\mathrm{x}$ If ($x y$.eq. 0) then $\operatorname{verf}(\mathrm{i})=2!$ two levels of bisection Else $\operatorname{verf}(\mathrm{i})=0!$ no need to refine End if
End do
external RefineRule
Do ilevel $=1,5$
Call LocalRefine (nv, nvmax, nb, nbmax, nt, ntmax, vrt, tri, bnd, labelB, labelT,
RefineRule, ilevel, maxlevel, history, MaxWi, iW, iERR)
End do

Refining/Coarsening by Bisection, aniRCB

Hierarchical local coarsening

Subroutine CoarseRule (nE, IPE, XYP, verf, ilevel)
! coarse towards the diagonal $\mathrm{y}=\mathrm{x}$
Do $\mathrm{i}=1$, nt
If ($x y$.eq. 0) then $\operatorname{verf}(\mathrm{i})=2!$ two levels of merging Else
$\operatorname{verf}(\mathrm{i})=0!$ no need to coarse
End if
End do
external CoarseRule
Do ilevel $=5,1,-1$
Call LocalCoarse (nv, nvmax, nb, nbmax, nt, ntmax, vrt, tri, bnd, labelB, labelT,
CoarseRule, ilevel, maxlevel, history, MaxWi, iW, iERR)
End do

Metric-based adaptation, aniMBA

generation of a mesh using an analytic metric

Call mbaAnalytic(nv, nvfix, nvmax, vrt, labelv, fixedV,
nb, nbfix, nbmax, bnd, labelB, fixedB,
nc, Crv, iFnc, CrvFunction,
nt, ntfix, ntmax, tri, labelT, fixedT,
nEStar, Quality, control, MetricFunction,
MaxWr, MaxWi, rW, iW, iERR)

Metric-based adaptation, aniMBA

mesh cosmetics and untangling fixes the elements with bad shape and even tangled

Call mbaFixShape(
nv, nvfix, nvmax, vrt, labelv, fixedV, nb, nbfix, nbmax, bnd, labelB, fixedB,
nc, Crv, iFnc, ANI_CrvFunction,
nt, ntfix, ntmax, tri, labelT, fixedT,
nEStar, Quality, control, ANI_MetricFunction,
MaxWr, MaxWi, rW, iW, iERR)

Metric-based adaptation, aniMBA

generation of a mesh using a user-defined metric at input mesh nodes

Call mbaNodal(
nv, nvfix, nvmax, vrt, labelv, fixedV,
nb, nbfix, nbmax, bnd, labelB, fixedB,
nc, Crv, iFnc, CrvFunction,
nt, ntfix, ntmax, tri, labelT, fixedT, nEStar, Quality, control, Metric,
MaxWr, MaxWi, rW, iW, iERR)

Real*8 Metric(3,nvmax)

Metric-based adaptation, aniMBA

generation of a mesh using a user-defined metric at input mesh nodes

Call mbaNodal(
nv, nvfix, nvmax, vrt, labelv, fixedV, nb, nbfix, nbmax, bnd, labelB, fixedB,
nc, Crv, iFnc, CrvFunction,
nt, ntfix, ntmax, tri, labelT, fixedT, nEStar, Quality, control, Metric,
MaxWr, MaxWi, rW, iW, iERR)

Real*8 Metric(3,nvmax)

Local Metric Recovery, aniLMR

Local metric recovery from discrete function (P_{1} FEM)

Call Nodal2MetricVAR(U, vrt, nv, tri, nt, nnd, nb, Metric, MaxWr, rW, MaxWi, iW)

Local Metric Recovery, aniLMR

Local metric recovery from edge-based error estimator

Call EdgeEst2MetricMAX(Error, nv, nt, vrt, tri, Metric, MaxWr, rW)

Call EdgeEst2GradMetricMAX(Error, nv, nt, vrt, tri, Metric, MaxWr, rW)

Metric can be modified for error minimization in L^{p} :

Call Lp_norm(nP, Lp, Metric)

Finite Element Method Discretization, aniFEM

Computing of elemental matrix on a triangle $<D O p_{A}(u), O p_{B}(v)>$

- D is a tensor,
- $O p_{A}$ and $O p_{B}$ are linear first-order or zero-order differential operators,
- u and v are finite element basis functions.

Finite Element Method Discretization, aniFEM

Computing of elemental matrix on a triangle $<D O p_{A}(u), O p_{B}(v)>$

Call FEM2Dtri(XY1, XY2, XY3, OpA, FemA, OpB, FemB, label, Dcoef, dDATA, iDATA, iSYS, order, LDA, A, nRow, nCol)

Call FEM2Dext(XY1, XY2, XY3, lbE, IbF, IbP, dDATA, iDATA, iSYS, LDA, A, F, nRow, nCol, template, templateC)

Finite Element Method Discretization, aniFEM

Computing of elemental matrix on a triangle $<D O p_{A}(u), O p_{B}(v)>$

Finite elements
FEM_P0
FEM_P1
FEM_P2
FEM_P3
FEM_P4
FEM_P1vector
FEM_P2vector
FEM_P2reduced

FEM_MINI
FEM_RT0
FEM_BDM1
FEM_CR1
FEM_CR1vector

The piecewise constant (T_{1}).
The continuous piecewise linear $\left(V_{1}, V_{2}, V_{3}\right)$.
The continuous piecewise quadratic $\left(V_{1}, V_{2}, V_{3}, E_{1}, E_{2}, E_{3}\right)$.
The continuous piecewise cubic $\left(V_{1}, V_{2}, V_{3}, E_{1}, E_{2}, E_{3}, E_{1}, E_{2}, E_{3}, T_{1}\right)$.
The continuous piecewise quartic $\left(V_{1}, V_{2}, V_{3}, E_{1}, E_{2}, E_{3}, E_{1}, E_{2}, E_{3}\right.$, $\left.E_{1}, E_{2}, E_{3}, T_{1}, T_{1}, T_{1}\right)$.
The continuous vector piecewise linear $\left(V_{1}, V_{2}, V_{3}, V_{1}, V_{2}, V_{3}\right)$.
The continuous vector piecewise quadratic. The unknowns are ordered first as in the quadratic element and then by the space dimension. The Bernardi-Fortin-Raugel finite element, the continuous vector piecewise linear functions enriched by edge bubbles ($V_{1}, V_{2}, V_{3}, E_{1}, E_{2}, E_{3}$ V_{1}, V_{2}, V_{3}).
The continuous vector piecewise linear functions enriched by a central bubble ($\left.V_{1}, V_{2}, V_{3}, E_{1}, V_{1}, V_{2}, V_{3}, E_{1}\right)$
The lowest order Raviart-Thomas finite elements
The lowest order Brezzi-Douglas-Marini finite elements
The Crouzeix-Raviart finite element.
The vector Crouzeix-Raviart finite element. The unknowns are ordered first by vertices and then by the space directions (x and y).

Finite Element Method Discretization, aniFEM

Computing of elemental matrix on a triangle $<D O p_{A}(u), O p_{B}(v)>$

Discrete operators $O p_{A}$ and $O p_{B}$.
IDEN identity operator
GRAD gradient operator
DIV divergence operator
CURL rotor operator
DUDX partial derivative d / dx
DUDY partial derivative $d / d y$
DUDN partial derivative in direction of an exterior normal

Finite Element Method Discretization, aniFEM

Computing of elemental matrix on a triangle $<D O p_{A}(u), O p_{B}(v)>$

Tensors D

TENSOR_NULL
TENSOR_SCALAR
TENSOR_SYMMETRIC
TENSOR_GENERAL

identity tensor
scalar tensor
symmetric tensor
general (rectangular or non-symmetric) tensor

Finite Element Method Discretization, aniFEM

Computing of elemental matrix on a triangle $<D O p_{A}(u), O p_{B}(v)>$

Quadrature formulae:

$$
\begin{array}{ll}
\text { order }=1 & \text { quadrature formula with one central point } \\
\text { order }=2 & \text { quadrature formula with } 3 \text { points on triangle edges } \\
\text { order }=5 & \text { quadrature formula with } 7 \text { points inside triangle } \\
\text { order }=6 & \text { quadrature formula with } 12 \text { points inside triangle } \\
\text { order }=9 & \text { quadrature formula with } 19 \text { points inside triangle } \\
\text { order }=13 & \text { quadrature formula with } 37 \text { points inside triangle }
\end{array}
$$

Finite Element Method Discretization, aniFEM

Computing of elemental matrix on a triangle $<D O p_{A}(u), O p_{B}(v)>$

Assembling routine

Subroutine BilinearFormTemplate(
nP, nF, nE, XYP, IbP, IPF, IbF, IPE, IbE, FEM2Dext, dDATA, iDATA, control,
MaxF, MaxA, IA, JA, A, F, nRow, nCol, MaxWi, MaxWr, iW, rW)

Sparse matrix is output in CSR/CSC/AMG format

Finite Element Method Discretization, aniFEM

Computing of elemental matrix on a triangle $<D O p_{A}(u), O p_{B}(v)>$

Error calculation:

$$
\left\|u-u_{h}\right\|_{*}^{p}=\int_{\Delta}\left|D\left(O p_{A}\left(u_{h}\right)-u\right) \cdot\left(O p_{A}\left(u_{h}\right)-u\right)\right|^{p / 2} \mathrm{~d} x,
$$

Call fem2Derr(XY1, XY2, XY3, Lp, operatorA, FEMtypeA, Uh, Fu, dDATAFU, iDATAFU, label, D, dDATA, iDATA, iSYS, order, ERR)

Solvers of algebraic systems
LU sparse factorization, aniLU

$$
\begin{gathered}
A x=b \\
P_{1} A P_{2}=L U
\end{gathered}
$$

- A is given in CSC format
- UMFPACK v5.1 library

Solvers of algebraic systems
Iterative solvers with ILU preconditioners, anilLU

$$
A x=b
$$

- A is given in CSR format
- BiCGstab, GMRES(k), PCG
- ILU0, ILU2 (second order)

Call slpbcgs(prevec, IPREVEC, iW,rW, matvec, IMATVEC, ia,ja,a, WORK, MW, NW, N, RHS, SOL,

ITER, RESID, INFO, NUNIT)

Solvers of algebraic systems

Inexact Newton-Krylov Jacobian-Free with ILU preconditioners, anilNB

$$
F(u)=0
$$

- F is function given by user
- BiCGstab, Jacobian-Free: $J(u) v \approx \delta^{-1}(F(u+\delta v)-F(u))$
- ILU0, ILU2 (second order) preconditioners

```
external prevec, funvec
Call sllnexactNewton(prevec, IPREVEC, iWprevec, rWprevec,
    funvec, rpar, ipar,
    N, SOL,
    RESID, STPTOL, rWORK, LenrWORK, INFO)
```

Options for domain definition in Ani3D
http://sourceforge.net/projects/ani3d

Boundary as a union of smooth parameterized patches

Options for domain definition in Ani3D
http://sourceforge.net/projects/ani3d
Boundary as a combination of given front primitives

Options for domain definition in Ani3D
http://sourceforge.net/projects/ani3d

Boundary as a CAD mesh with triangular facets

Options for domain definition in Ani3D
http://sourceforge.net/projects/ani3d

Boundary representation through a CAD system

